Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
2 |
|
funres11 |
⊢ ( Fun ◡ 𝑃 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
4 |
|
imain |
⊢ ( Fun ◡ 𝑃 → ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
5 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
6 |
5
|
oveq1i |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) |
7 |
6
|
ineq2i |
⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
prinfzo0 |
⊢ ( 0 ∈ ℤ → ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ ) |
10 |
8 9
|
ax-mp |
⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( ( 0 + 1 ) ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
11 |
7 10
|
eqtri |
⊢ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
12 |
11
|
imaeq2i |
⊢ ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝑃 “ ∅ ) |
13 |
|
ima0 |
⊢ ( 𝑃 “ ∅ ) = ∅ |
14 |
12 13
|
eqtri |
⊢ ( 𝑃 “ ( { 0 , ( ♯ ‘ 𝐹 ) } ∩ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ |
15 |
4 14
|
eqtr3di |
⊢ ( Fun ◡ 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
16 |
15
|
adantl |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
17 |
1 3 16
|
3jca |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
18 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
19 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
20 |
17 18 19
|
3imtr4i |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |