| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
| 2 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 3 |
|
mulrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
| 4 |
3
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( 𝐴 · 1 ) ) |
| 5 |
2 4
|
eqeq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ) ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
mulcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) |
| 9 |
7 8
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) |
| 10 |
9
|
anabss5 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) |
| 11 |
6 10
|
bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ 𝐴 = 1 ) ) |
| 12 |
11
|
biimpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 → 𝐴 = 1 ) ) |
| 13 |
12
|
impancom |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( 𝐴 ≠ 0 → 𝐴 = 1 ) ) |
| 14 |
1 13
|
biimtrrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( ¬ 𝐴 = 0 → 𝐴 = 1 ) ) |
| 15 |
14
|
orrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) |
| 16 |
15
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |
| 17 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
| 18 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = ( 0 ↑ 2 ) ) |
| 19 |
|
id |
⊢ ( 𝐴 = 0 → 𝐴 = 0 ) |
| 20 |
17 18 19
|
3eqtr4a |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 21 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 22 |
|
oveq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 23 |
|
id |
⊢ ( 𝐴 = 1 → 𝐴 = 1 ) |
| 24 |
21 22 23
|
3eqtr4a |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 25 |
20 24
|
jaoi |
⊢ ( ( 𝐴 = 0 ∨ 𝐴 = 1 ) → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 26 |
16 25
|
impbid1 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |