Metamath Proof Explorer
Description: The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021)
(Revised by AV, 1-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
sq10e99m1 |
⊢ ( ; 1 0 ↑ 2 ) = ( ; 9 9 + 1 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sq10 |
⊢ ( ; 1 0 ↑ 2 ) = ; ; 1 0 0 |
2 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
3 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
4 |
|
eqid |
⊢ ; 9 9 = ; 9 9 |
5 |
2 3 4
|
decsucc |
⊢ ( ; 9 9 + 1 ) = ; ; 1 0 0 |
6 |
1 5
|
eqtr4i |
⊢ ( ; 1 0 ↑ 2 ) = ( ; 9 9 + 1 ) |