Metamath Proof Explorer


Theorem sq11d

Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 ( 𝜑𝐴 ∈ ℝ )
lt2sqd.2 ( 𝜑𝐵 ∈ ℝ )
lt2sqd.3 ( 𝜑 → 0 ≤ 𝐴 )
lt2sqd.4 ( 𝜑 → 0 ≤ 𝐵 )
sq11d.5 ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) )
Assertion sq11d ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 resqcld.1 ( 𝜑𝐴 ∈ ℝ )
2 lt2sqd.2 ( 𝜑𝐵 ∈ ℝ )
3 lt2sqd.3 ( 𝜑 → 0 ≤ 𝐴 )
4 lt2sqd.4 ( 𝜑 → 0 ≤ 𝐵 )
5 sq11d.5 ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) )
6 sq11 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) )
7 1 3 2 4 6 syl22anc ( 𝜑 → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) )
8 5 7 mpbid ( 𝜑𝐴 = 𝐵 )