Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
lt2sqd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
lt2sqd.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
lt2sqd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | ||
sq11d.5 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | ||
Assertion | sq11d | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | lt2sqd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | lt2sqd.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
4 | lt2sqd.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | |
5 | sq11d.5 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | |
6 | sq11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) | |
7 | 1 3 2 4 6 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) |
8 | 5 7 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |