Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqcl.1 | ⊢ 𝐴 ∈ ℝ | |
| lt2sq.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | sq11i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt2sq.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | 1 | recni | ⊢ 𝐴 ∈ ℂ | 
| 4 | 3 | sqvali | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) | 
| 5 | 2 | recni | ⊢ 𝐵 ∈ ℂ | 
| 6 | 5 | sqvali | ⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) | 
| 7 | 4 6 | eqeq12i | ⊢ ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ) | 
| 8 | 1 2 | msq11i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | 
| 9 | 7 8 | bitrid | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) ) |