Metamath Proof Explorer


Theorem sq11i

Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999)

Ref Expression
Hypotheses resqcl.1 𝐴 ∈ ℝ
lt2sq.2 𝐵 ∈ ℝ
Assertion sq11i ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 resqcl.1 𝐴 ∈ ℝ
2 lt2sq.2 𝐵 ∈ ℝ
3 1 recni 𝐴 ∈ ℂ
4 3 sqvali ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )
5 2 recni 𝐵 ∈ ℂ
6 5 sqvali ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 )
7 4 6 eqeq12i ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) )
8 1 2 msq11i ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) )
9 7 8 syl5bb ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = 𝐵 ) )