Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
2 |
|
sqge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) |
3 |
|
absid |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
5 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
7 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
9 |
4 8
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
10 |
|
resqcl |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
11 |
|
sqge0 |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) ) |
12 |
|
absid |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝐵 ∈ ℝ → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
14 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
15 |
|
absexp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
16 |
14 6 15
|
sylancl |
⊢ ( 𝐵 ∈ ℝ → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
18 |
9 17
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
19 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
20 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
21 |
19 20
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
22 |
|
abscl |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) |
23 |
|
absge0 |
⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( abs ‘ 𝐵 ) ) |
24 |
22 23
|
jca |
⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
25 |
|
sq11 |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
26 |
21 24 25
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
27 |
5 14 26
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
28 |
18 27
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |