| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cjsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∗ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  ·  ( ∗ ‘ ( 𝐴  −  𝐵 ) ) )  =  ( ( 𝐴  −  𝐵 )  ·  ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 3 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | cjcl | ⊢ ( 𝐵  ∈  ℂ  →  ( ∗ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 5 | 3 4 | anim12i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( ∗ ‘ 𝐵 )  ∈  ℂ ) ) | 
						
							| 6 |  | mulsub | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( ∗ ‘ 𝐵 )  ∈  ℂ ) )  →  ( ( 𝐴  −  𝐵 )  ·  ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) )  −  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 7 | 5 6 | mpdan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  ·  ( ( ∗ ‘ 𝐴 )  −  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) )  −  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 8 | 2 7 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  ·  ( ∗ ‘ ( 𝐴  −  𝐵 ) ) )  =  ( ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) )  −  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 9 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 10 |  | absvalsq | ⊢ ( ( 𝐴  −  𝐵 )  ∈  ℂ  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  −  𝐵 )  ·  ( ∗ ‘ ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  −  𝐵 )  ·  ( ∗ ‘ ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 12 |  | absvalsq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | absvalsq | ⊢ ( 𝐵  ∈  ℂ  →  ( ( abs ‘ 𝐵 ) ↑ 2 )  =  ( 𝐵  ·  ( ∗ ‘ 𝐵 ) ) ) | 
						
							| 14 |  | mulcom | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( ∗ ‘ 𝐵 )  ∈  ℂ )  →  ( 𝐵  ·  ( ∗ ‘ 𝐵 ) )  =  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) ) | 
						
							| 15 | 4 14 | mpdan | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  ·  ( ∗ ‘ 𝐵 ) )  =  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) ) | 
						
							| 16 | 13 15 | eqtrd | ⊢ ( 𝐵  ∈  ℂ  →  ( ( abs ‘ 𝐵 ) ↑ 2 )  =  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) ) | 
						
							| 17 | 12 16 | oveqan12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( ( abs ‘ 𝐵 ) ↑ 2 ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) ) ) | 
						
							| 18 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ∗ ‘ 𝐵 )  ∈  ℂ )  →  ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 19 | 4 18 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 20 | 19 | addcjd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ∗ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) )  =  ( 2  ·  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) ) ) | 
						
							| 21 |  | cjmul | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ∗ ‘ 𝐵 )  ∈  ℂ )  →  ( ∗ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 22 | 4 21 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∗ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ∗ ‘ 𝐴 )  ·  ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) ) ) | 
						
							| 23 |  | cjcj | ⊢ ( 𝐵  ∈  ℂ  →  ( ∗ ‘ ( ∗ ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∗ ‘ ( ∗ ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ∗ ‘ 𝐴 )  ·  ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ∗ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ∗ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 28 | 20 27 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 2  ·  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 29 | 17 28 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( ( abs ‘ 𝐵 ) ↑ 2 ) )  −  ( 2  ·  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) ) )  =  ( ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐵 )  ·  𝐵 ) )  −  ( ( 𝐴  ·  ( ∗ ‘ 𝐵 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐵 ) ) ) ) | 
						
							| 30 | 8 11 29 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( ( abs ‘ 𝐵 ) ↑ 2 ) )  −  ( 2  ·  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) ) ) ) ) |