Metamath Proof Explorer


Theorem sqdivd

Description: Distribution of square over division. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
sqdivd.3 ( 𝜑𝐵 ≠ 0 )
Assertion sqdivd ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
3 sqdivd.3 ( 𝜑𝐵 ≠ 0 )
4 sqdiv ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )