Metamath Proof Explorer


Theorem sqeq0d

Description: A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
sqeq0d.1 ( 𝜑 → ( 𝐴 ↑ 2 ) = 0 )
Assertion sqeq0d ( 𝜑𝐴 = 0 )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 sqeq0d.1 ( 𝜑 → ( 𝐴 ↑ 2 ) = 0 )
3 2nn 2 ∈ ℕ
4 3 a1i ( 𝜑 → 2 ∈ ℕ )
5 1 4 2 expeq0d ( 𝜑𝐴 = 0 )