| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ↑ 2 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) ) |
| 2 |
1
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ) ) |
| 4 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) |
| 5 |
3 4
|
orbi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) |
| 6 |
2 5
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) |
| 9 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 10 |
|
negeq |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → - 𝐵 = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) |
| 11 |
10
|
eqeq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 12 |
9 11
|
orbi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
| 13 |
8 12
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) ) |
| 14 |
|
0cn |
⊢ 0 ∈ ℂ |
| 15 |
14
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 16 |
14
|
elimel |
⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 17 |
15 16
|
sqeqori |
⊢ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 18 |
6 13 17
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |