Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ↑ 2 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) ) |
3 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) |
5 |
3 4
|
orbi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) |
6 |
2 5
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) |
9 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
10 |
|
negeq |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → - 𝐵 = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ↔ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
12 |
9 11
|
orbi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
13 |
8 12
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = 𝐵 ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - 𝐵 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) ) |
14 |
|
0cn |
⊢ 0 ∈ ℂ |
15 |
14
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
16 |
14
|
elimel |
⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
17 |
15 16
|
sqeqori |
⊢ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ↔ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∨ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) = - if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
18 |
6 13 17
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |