Step |
Hyp |
Ref |
Expression |
1 |
|
sqff1o.1 |
⊢ 𝑆 = { 𝑥 ∈ ℕ ∣ ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) } |
2 |
|
sqff1o.2 |
⊢ 𝐹 = ( 𝑛 ∈ 𝑆 ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
3 |
|
sqff1o.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( μ ‘ 𝑥 ) = ( μ ‘ 𝑛 ) ) |
5 |
4
|
neeq1d |
⊢ ( 𝑥 = 𝑛 → ( ( μ ‘ 𝑥 ) ≠ 0 ↔ ( μ ‘ 𝑛 ) ≠ 0 ) ) |
6 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) ↔ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
8 |
7 1
|
elrab2 |
⊢ ( 𝑛 ∈ 𝑆 ↔ ( 𝑛 ∈ ℕ ∧ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
9 |
8
|
simprbi |
⊢ ( 𝑛 ∈ 𝑆 → ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) |
10 |
9
|
simprd |
⊢ ( 𝑛 ∈ 𝑆 → 𝑛 ∥ 𝑁 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∥ 𝑁 ) |
12 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
14 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ 𝑆 ) |
15 |
14 8
|
sylib |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑛 ∈ ℕ ∧ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
16 |
15
|
simpld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℕ ) |
17 |
16
|
nnzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℤ ) |
18 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
20 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁 ) → 𝑝 ∥ 𝑁 ) ) |
21 |
13 17 19 20
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁 ) → 𝑝 ∥ 𝑁 ) ) |
22 |
11 21
|
mpan2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑛 → 𝑝 ∥ 𝑁 ) ) |
23 |
22
|
ss2rabdv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
24 |
|
prmex |
⊢ ℙ ∈ V |
25 |
24
|
rabex |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ V |
26 |
25
|
elpw |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
27 |
23 26
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
28 |
|
cnveq |
⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ◡ 𝑦 = ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) |
29 |
28
|
imaeq1d |
⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ( ◡ 𝑦 “ ℕ ) = ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ( ( ◡ 𝑦 “ ℕ ) ∈ Fin ↔ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) ) |
31 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
32 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
33 |
31 32
|
ifcli |
⊢ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
34 |
33
|
rgenw |
⊢ ∀ 𝑘 ∈ ℙ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
35 |
|
eqid |
⊢ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) |
36 |
35
|
fmpt |
⊢ ( ∀ 𝑘 ∈ ℙ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 ↔ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
37 |
34 36
|
mpbi |
⊢ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 |
38 |
37
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
39 |
|
nn0ex |
⊢ ℕ0 ∈ V |
40 |
39 24
|
elmap |
⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ ( ℕ0 ↑m ℙ ) ↔ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
41 |
38 40
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ ( ℕ0 ↑m ℙ ) ) |
42 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
43 |
|
ffn |
⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) Fn ℙ ) |
44 |
|
elpreima |
⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) Fn ℙ → ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ↔ ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) ) ) |
45 |
37 43 44
|
mp2b |
⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ↔ ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) ) |
46 |
|
elequ1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
47 |
46
|
ifbid |
⊢ ( 𝑘 = 𝑥 → if ( 𝑘 ∈ 𝑧 , 1 , 0 ) = if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ) |
48 |
31 32
|
ifcli |
⊢ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
49 |
48
|
elexi |
⊢ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ V |
50 |
47 35 49
|
fvmpt |
⊢ ( 𝑥 ∈ ℙ → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ) |
51 |
50
|
eleq1d |
⊢ ( 𝑥 ∈ ℙ → ( ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ↔ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) ) |
52 |
51
|
biimpa |
⊢ ( ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
53 |
45 52
|
sylbi |
⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
54 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
55 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝑧 → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) = 0 ) |
56 |
55
|
eleq1d |
⊢ ( ¬ 𝑥 ∈ 𝑧 → ( if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ↔ 0 ∈ ℕ ) ) |
57 |
54 56
|
mtbiri |
⊢ ( ¬ 𝑥 ∈ 𝑧 → ¬ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
58 |
57
|
con4i |
⊢ ( if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ → 𝑥 ∈ 𝑧 ) |
59 |
53 58
|
syl |
⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) → 𝑥 ∈ 𝑧 ) |
60 |
59
|
ssriv |
⊢ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ 𝑧 |
61 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑧 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
62 |
61
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑧 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
63 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
64 |
|
rabss2 |
⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ) |
65 |
63 64
|
ax-mp |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } |
66 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
68 |
65 67
|
sstrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
69 |
62 68
|
sstrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑧 ⊆ ( 1 ... 𝑁 ) ) |
70 |
60 69
|
sstrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ ( 1 ... 𝑁 ) ) |
71 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ ( 1 ... 𝑁 ) ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) |
72 |
42 70 71
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) |
73 |
30 41 72
|
elrabd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
74 |
|
eqid |
⊢ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } = { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } |
75 |
3 74
|
1arith |
⊢ 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } |
76 |
|
f1ocnv |
⊢ ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } → ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } –1-1-onto→ ℕ ) |
77 |
|
f1of |
⊢ ( ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } –1-1-onto→ ℕ → ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ⟶ ℕ ) |
78 |
75 76 77
|
mp2b |
⊢ ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ⟶ ℕ |
79 |
78
|
ffvelrni |
⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ) |
80 |
73 79
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ) |
81 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ∧ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) |
82 |
75 73 81
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) |
83 |
3
|
1arithlem1 |
⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
84 |
80 83
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
85 |
82 84
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
86 |
85
|
fveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑞 ) = ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) ) |
87 |
|
elequ1 |
⊢ ( 𝑘 = 𝑞 → ( 𝑘 ∈ 𝑧 ↔ 𝑞 ∈ 𝑧 ) ) |
88 |
87
|
ifbid |
⊢ ( 𝑘 = 𝑞 → if ( 𝑘 ∈ 𝑧 , 1 , 0 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
89 |
31 32
|
ifcli |
⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
90 |
89
|
elexi |
⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ∈ V |
91 |
88 35 90
|
fvmpt |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑞 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
92 |
86 91
|
sylan9req |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
93 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
94 |
|
eqid |
⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
95 |
|
ovex |
⊢ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ∈ V |
96 |
93 94 95
|
fvmpt |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
98 |
92 97
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
99 |
|
breq1 |
⊢ ( 1 = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) → ( 1 ≤ 1 ↔ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 ) ) |
100 |
|
breq1 |
⊢ ( 0 = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) → ( 0 ≤ 1 ↔ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 ) ) |
101 |
|
1le1 |
⊢ 1 ≤ 1 |
102 |
|
0le1 |
⊢ 0 ≤ 1 |
103 |
99 100 101 102
|
keephyp |
⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 |
104 |
98 103
|
eqbrtrrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) |
105 |
104
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) |
106 |
|
issqf |
⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) ) |
107 |
80 106
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) ) |
108 |
105 107
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ) |
109 |
|
iftrue |
⊢ ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 1 ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 1 ) |
111 |
62
|
sselda |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
112 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁 ) ) |
113 |
112
|
elrab |
⊢ ( 𝑞 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁 ) ) |
114 |
111 113
|
sylib |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁 ) ) |
115 |
114
|
simprd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∥ 𝑁 ) |
116 |
114
|
simpld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∈ ℙ ) |
117 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑁 ∈ ℕ ) |
118 |
|
pcelnn |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑞 pCnt 𝑁 ) ∈ ℕ ↔ 𝑞 ∥ 𝑁 ) ) |
119 |
116 117 118
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( ( 𝑞 pCnt 𝑁 ) ∈ ℕ ↔ 𝑞 ∥ 𝑁 ) ) |
120 |
115 119
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( 𝑞 pCnt 𝑁 ) ∈ ℕ ) |
121 |
120
|
nnge1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 1 ≤ ( 𝑞 pCnt 𝑁 ) ) |
122 |
110 121
|
eqbrtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
123 |
122
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
124 |
123
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
125 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
126 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
127 |
|
pcge0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑞 pCnt 𝑁 ) ) |
128 |
125 126 127
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 0 ≤ ( 𝑞 pCnt 𝑁 ) ) |
129 |
|
iffalse |
⊢ ( ¬ 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 0 ) |
130 |
129
|
breq1d |
⊢ ( ¬ 𝑞 ∈ 𝑧 → ( if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ↔ 0 ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
131 |
128 130
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ¬ 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
132 |
124 131
|
pm2.61d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
133 |
98 132
|
eqbrtrrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
134 |
133
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
135 |
80
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℤ ) |
136 |
18
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑁 ∈ ℤ ) |
137 |
|
pc2dvds |
⊢ ( ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
138 |
135 136 137
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
139 |
134 138
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) |
140 |
108 139
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) |
141 |
|
fveq2 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( μ ‘ 𝑥 ) = ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
142 |
141
|
neeq1d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( ( μ ‘ 𝑥 ) ≠ 0 ↔ ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ) ) |
143 |
|
breq1 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( 𝑥 ∥ 𝑁 ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) |
144 |
142 143
|
anbi12d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) ↔ ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) ) |
145 |
144 1
|
elrab2 |
⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ 𝑆 ↔ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ∧ ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) ) |
146 |
80 140 145
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ 𝑆 ) |
147 |
|
eqcom |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) |
148 |
8
|
simplbi |
⊢ ( 𝑛 ∈ 𝑆 → 𝑛 ∈ ℕ ) |
149 |
148
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑛 ∈ ℕ ) |
150 |
24
|
mptex |
⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ V |
151 |
3
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
152 |
149 150 151
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
153 |
152
|
eqeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) |
154 |
75
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
155 |
73
|
adantrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
156 |
|
f1ocnvfvb |
⊢ ( ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ∧ 𝑛 ∈ ℕ ∧ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) ) |
157 |
154 149 155 156
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) ) |
158 |
24
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ℙ ∈ V ) |
159 |
|
0cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 0 ∈ ℂ ) |
160 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 1 ∈ ℂ ) |
161 |
|
0ne1 |
⊢ 0 ≠ 1 |
162 |
161
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 0 ≠ 1 ) |
163 |
158 159 160 162
|
pw2f1olem |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑧 ∈ 𝒫 ℙ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ∧ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) ) |
164 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ ℙ |
165 |
164
|
sspwi |
⊢ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ 𝒫 ℙ |
166 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
167 |
165 166
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ 𝒫 ℙ ) |
168 |
167
|
biantrurd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( 𝑧 ∈ 𝒫 ℙ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
169 |
|
id |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) |
170 |
148
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → 𝑛 ∈ ℕ ) |
171 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ) |
172 |
169 170 171
|
syl2anr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ) |
173 |
|
elnn0 |
⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝑛 ) = 0 ) ) |
174 |
172 173
|
sylib |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝑛 ) = 0 ) ) |
175 |
174
|
orcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) ) |
176 |
9
|
simpld |
⊢ ( 𝑛 ∈ 𝑆 → ( μ ‘ 𝑛 ) ≠ 0 ) |
177 |
176
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( μ ‘ 𝑛 ) ≠ 0 ) |
178 |
|
issqf |
⊢ ( 𝑛 ∈ ℕ → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) ) |
179 |
170 178
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) ) |
180 |
177 179
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) |
181 |
180
|
r19.21bi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ≤ 1 ) |
182 |
|
nnle1eq1 |
⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ → ( ( 𝑝 pCnt 𝑛 ) ≤ 1 ↔ ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
183 |
181 182
|
syl5ibcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ → ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
184 |
183
|
orim2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) ) |
185 |
175 184
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
186 |
|
ovex |
⊢ ( 𝑝 pCnt 𝑛 ) ∈ V |
187 |
186
|
elpr |
⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ { 0 , 1 } ↔ ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
188 |
185 187
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ∈ { 0 , 1 } ) |
189 |
188
|
fmpttd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
190 |
189
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
191 |
|
prex |
⊢ { 0 , 1 } ∈ V |
192 |
191 24
|
elmap |
⊢ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ↔ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
193 |
190 192
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ) |
194 |
193
|
biantrurd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ↔ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ∧ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) ) |
195 |
163 168 194
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) |
196 |
|
eqid |
⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) |
197 |
196
|
mptiniseg |
⊢ ( 1 ∈ ℕ0 → ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } ) |
198 |
31 197
|
ax-mp |
⊢ ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } |
199 |
|
id |
⊢ ( ( 𝑝 pCnt 𝑛 ) = 1 → ( 𝑝 pCnt 𝑛 ) = 1 ) |
200 |
|
1nn |
⊢ 1 ∈ ℕ |
201 |
199 200
|
eqeltrdi |
⊢ ( ( 𝑝 pCnt 𝑛 ) = 1 → ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) |
202 |
201 183
|
impbid2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 1 ↔ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) ) |
203 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
204 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ↔ 𝑝 ∥ 𝑛 ) ) |
205 |
203 16 204
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ↔ 𝑝 ∥ 𝑛 ) ) |
206 |
202 205
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 1 ↔ 𝑝 ∥ 𝑛 ) ) |
207 |
206
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
208 |
207
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
209 |
198 208
|
syl5eq |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
210 |
209
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
211 |
195 210
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
212 |
153 157 211
|
3bitr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
213 |
147 212
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
214 |
2 27 146 213
|
f1o2d |
⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝑆 –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |