Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) |
2 |
1
|
nnsqcld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℕ ) |
3 |
2
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ) |
4 |
3
|
mulid1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) |
5 |
|
nnsqcl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
6 |
5
|
nnzd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
8 |
|
nnsqcl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
9 |
8
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
11 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
12 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
13 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
15 |
14
|
simpld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
16 |
1
|
nnzd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
17 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
18 |
|
dvdssqim |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) ) |
20 |
15 19
|
mpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) |
21 |
14
|
simprd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
22 |
12
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
23 |
|
dvdssqim |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
24 |
16 22 23
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
25 |
21 24
|
mpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) |
26 |
|
gcddiv |
⊢ ( ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℕ ) ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) |
27 |
7 10 2 20 25 26
|
syl32anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) |
28 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
29 |
28
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
30 |
1
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
31 |
1
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
32 |
29 30 31
|
sqdivd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) |
33 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
34 |
33
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
35 |
34 30 31
|
sqdivd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) = ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) |
36 |
32 35
|
oveq12d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) |
37 |
|
gcddiv |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℕ ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
38 |
17 22 1 14 37
|
syl31anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
39 |
30 31
|
dividd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = 1 ) |
40 |
38 39
|
eqtr3d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 ) |
41 |
|
dvdsval2 |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
42 |
16 31 17 41
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
43 |
15 42
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
44 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
45 |
44
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
46 |
1
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) |
47 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
48 |
47
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑀 ) |
49 |
1
|
nngt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑀 gcd 𝑁 ) ) |
50 |
45 46 48 49
|
divgt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) |
51 |
|
elnnz |
⊢ ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ↔ ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 0 < ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
52 |
43 50 51
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
53 |
|
dvdsval2 |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
54 |
16 31 22 53
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
55 |
21 54
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
56 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
57 |
56
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
58 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
59 |
58
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 ) |
60 |
57 46 59 49
|
divgt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) |
61 |
|
elnnz |
⊢ ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ↔ ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 0 < ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
62 |
55 60 61
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
63 |
|
2nn |
⊢ 2 ∈ ℕ |
64 |
|
rppwr |
⊢ ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) |
65 |
63 64
|
mp3an3 |
⊢ ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) |
66 |
52 62 65
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) |
67 |
40 66
|
mpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) |
68 |
27 36 67
|
3eqtr2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ) |
69 |
6 9
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) ) |
70 |
5
|
nnne0d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ≠ 0 ) |
71 |
70
|
neneqd |
⊢ ( 𝑀 ∈ ℕ → ¬ ( 𝑀 ↑ 2 ) = 0 ) |
72 |
71
|
intnanrd |
⊢ ( 𝑀 ∈ ℕ → ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) |
74 |
|
gcdn0cl |
⊢ ( ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) ∧ ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℕ ) |
75 |
69 73 74
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℕ ) |
76 |
75
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
77 |
2
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) |
78 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
79 |
|
divmul |
⊢ ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) |
80 |
78 79
|
mp3an2 |
⊢ ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) |
81 |
76 3 77 80
|
syl12anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) |
82 |
68 81
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
83 |
4 82
|
eqtr3d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |