Metamath Proof Explorer


Theorem sqge0i

Description: A square of a real is nonnegative. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypothesis resqcl.1 𝐴 ∈ ℝ
Assertion sqge0i 0 ≤ ( 𝐴 ↑ 2 )

Proof

Step Hyp Ref Expression
1 resqcl.1 𝐴 ∈ ℝ
2 1 msqge0i 0 ≤ ( 𝐴 · 𝐴 )
3 1 recni 𝐴 ∈ ℂ
4 3 sqvali ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )
5 2 4 breqtrri 0 ≤ ( 𝐴 ↑ 2 )