Metamath Proof Explorer


Theorem sqgt0sr

Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion sqgt0sr ( ( 𝐴R𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0r 0RR
2 ltsosr <R Or R
3 sotrieq ( ( <R Or R ∧ ( 𝐴R ∧ 0RR ) ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) )
4 2 3 mpan ( ( 𝐴R ∧ 0RR ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) )
5 1 4 mpan2 ( 𝐴R → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) )
6 5 necon2abid ( 𝐴R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ↔ 𝐴 ≠ 0R ) )
7 m1r -1RR
8 mulclsr ( ( 𝐴R ∧ -1RR ) → ( 𝐴 ·R -1R ) ∈ R )
9 7 8 mpan2 ( 𝐴R → ( 𝐴 ·R -1R ) ∈ R )
10 ltasr ( ( 𝐴 ·R -1R ) ∈ R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) )
11 9 10 syl ( 𝐴R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) )
12 addcomsr ( ( 𝐴 ·R -1R ) +R 𝐴 ) = ( 𝐴 +R ( 𝐴 ·R -1R ) )
13 pn0sr ( 𝐴R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R )
14 12 13 eqtrid ( 𝐴R → ( ( 𝐴 ·R -1R ) +R 𝐴 ) = 0R )
15 0idsr ( ( 𝐴 ·R -1R ) ∈ R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) )
16 9 15 syl ( 𝐴R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) )
17 14 16 breq12d ( 𝐴R → ( ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ↔ 0R <R ( 𝐴 ·R -1R ) ) )
18 11 17 bitrd ( 𝐴R → ( 𝐴 <R 0R ↔ 0R <R ( 𝐴 ·R -1R ) ) )
19 mulgt0sr ( ( 0R <R ( 𝐴 ·R -1R ) ∧ 0R <R ( 𝐴 ·R -1R ) ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) )
20 19 anidms ( 0R <R ( 𝐴 ·R -1R ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) )
21 18 20 syl6bi ( 𝐴R → ( 𝐴 <R 0R → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) )
22 mulcomsr ( -1R ·R 𝐴 ) = ( 𝐴 ·R -1R )
23 22 oveq1i ( ( -1R ·R 𝐴 ) ·R -1R ) = ( ( 𝐴 ·R -1R ) ·R -1R )
24 mulasssr ( ( -1R ·R 𝐴 ) ·R -1R ) = ( -1R ·R ( 𝐴 ·R -1R ) )
25 mulasssr ( ( 𝐴 ·R -1R ) ·R -1R ) = ( 𝐴 ·R ( -1R ·R -1R ) )
26 23 24 25 3eqtr3i ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R -1R ) )
27 m1m1sr ( -1R ·R -1R ) = 1R
28 27 oveq2i ( 𝐴 ·R ( -1R ·R -1R ) ) = ( 𝐴 ·R 1R )
29 26 28 eqtri ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 1R )
30 29 oveq2i ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) )
31 mulasssr ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) )
32 mulasssr ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) )
33 30 31 32 3eqtr4i ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( ( 𝐴 ·R 𝐴 ) ·R 1R )
34 mulclsr ( ( 𝐴R𝐴R ) → ( 𝐴 ·R 𝐴 ) ∈ R )
35 1idsr ( ( 𝐴 ·R 𝐴 ) ∈ R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) )
36 34 35 syl ( ( 𝐴R𝐴R ) → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) )
37 36 anidms ( 𝐴R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) )
38 33 37 eqtrid ( 𝐴R → ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 𝐴 ) )
39 38 breq2d ( 𝐴R → ( 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ↔ 0R <R ( 𝐴 ·R 𝐴 ) ) )
40 21 39 sylibd ( 𝐴R → ( 𝐴 <R 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) )
41 mulgt0sr ( ( 0R <R 𝐴 ∧ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) )
42 41 anidms ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) )
43 42 a1i ( 𝐴R → ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) ) )
44 40 43 jaod ( 𝐴R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) ) )
45 6 44 sylbird ( 𝐴R → ( 𝐴 ≠ 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) )
46 45 imp ( ( 𝐴R𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) )