Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
5 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
9 |
|
lemul1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
10 |
8 9
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
11 |
10
|
3exp |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
12 |
11
|
exp4a |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) ) |
13 |
12
|
pm2.43a |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
14 |
13
|
adantrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
15 |
14
|
com23 |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
16 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
17 |
|
0le0 |
⊢ 0 ≤ 0 |
18 |
16 17
|
eqbrtri |
⊢ ( 0 ↑ 2 ) ≤ 0 |
19 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
20 |
19
|
mul01d |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 0 ) = 0 ) |
21 |
18 20
|
breqtrrid |
⊢ ( 𝐵 ∈ ℝ → ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ) |
22 |
21
|
adantl |
⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ) |
23 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
24 |
|
oveq2 |
⊢ ( 0 = 𝐴 → ( 𝐵 · 0 ) = ( 𝐵 · 𝐴 ) ) |
25 |
23 24
|
breq12d |
⊢ ( 0 = 𝐴 → ( ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) |
28 |
27
|
adantrr |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) |
29 |
|
breq1 |
⊢ ( 0 = 𝐴 → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
30 |
29
|
biimpa |
⊢ ( ( 0 = 𝐴 ∧ 0 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
31 |
30
|
adantrl |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
32 |
28 31
|
2thd |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
33 |
32
|
ex |
⊢ ( 0 = 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) |
34 |
33
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
35 |
15 34
|
jaod |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
36 |
3 35
|
sylbid |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
37 |
36
|
imp31 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |