Metamath Proof Explorer


Theorem sqmul

Description: Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008)

Ref Expression
Assertion sqmul ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 mulexp ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) )
3 1 2 mp3an3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) )