Metamath Proof Explorer
Description: Distribution of square over multiplication. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
mulexpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
Assertion |
sqmuld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
mulexpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
sqmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |