Metamath Proof Explorer


Theorem sqmuli

Description: Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999)

Ref Expression
Hypotheses sqval.1 𝐴 ∈ ℂ
sqmul.2 𝐵 ∈ ℂ
Assertion sqmuli ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 sqval.1 𝐴 ∈ ℂ
2 sqmul.2 𝐵 ∈ ℂ
3 sqmul ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) )
4 1 2 3 mp2an ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) )