Metamath Proof Explorer
Description: Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
sqval.1 |
⊢ 𝐴 ∈ ℂ |
|
|
sqmul.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
sqmuli |
⊢ ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sqval.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
sqmul.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
sqmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝐴 · 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) |