Description: A complex number is nonzero if and only if its square is nonzero. (Contributed by NM, 11-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqne0 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeq0 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 2 | 1 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |