Metamath Proof Explorer


Theorem sqneg

Description: The square of the negative of a number. (Contributed by NM, 15-Jan-2006)

Ref Expression
Assertion sqneg ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 mul2neg ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 𝐴 · - 𝐴 ) = ( 𝐴 · 𝐴 ) )
2 1 anidms ( 𝐴 ∈ ℂ → ( - 𝐴 · - 𝐴 ) = ( 𝐴 · 𝐴 ) )
3 negcl ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )
4 sqval ( - 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( - 𝐴 · - 𝐴 ) )
5 3 4 syl ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( - 𝐴 · - 𝐴 ) )
6 sqval ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
7 2 5 6 3eqtr4d ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) )