Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
3 |
|
absresq |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
5 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 𝐴 ∈ ℂ ) |
6 |
5
|
abscld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
8 |
7
|
sqvald |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
9 |
4 8
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) ∈ ℙ ) |
11 |
9 10
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) |
12 |
|
nn0abscl |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
14 |
13
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
15 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
16 |
|
prmuz2 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ℙ → ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
18 |
|
eluz2gt1 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( 𝐴 ↑ 2 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( 𝐴 ↑ 2 ) ) |
20 |
19 4
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
21 |
15 20
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
22 |
5
|
absge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
|
0le1 |
⊢ 0 ≤ 1 |
25 |
|
lt2sq |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
26 |
23 24 25
|
mpanl12 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
27 |
6 22 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 ↑ 2 ) < ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
28 |
21 27
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → 1 < ( abs ‘ 𝐴 ) ) |
29 |
|
eluz2b1 |
⊢ ( ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ 1 < ( abs ‘ 𝐴 ) ) ) |
30 |
14 28 29
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
31 |
|
nprm |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( abs ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) |
32 |
30 30 31
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℙ ) → ¬ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℙ ) |
33 |
11 32
|
pm2.65da |
⊢ ( 𝐴 ∈ ℤ → ¬ ( 𝐴 ↑ 2 ) ∈ ℙ ) |