| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | absresq | ⊢ ( 𝐴  ∈  ℝ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 5 | 2 | recnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 5 | abscld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 7 | sqvald | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 9 | 4 8 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( 𝐴 ↑ 2 )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( 𝐴 ↑ 2 )  ∈  ℙ ) | 
						
							| 11 | 9 10 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  ∈  ℙ ) | 
						
							| 12 |  | nn0abscl | ⊢ ( 𝐴  ∈  ℤ  →  ( abs ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( abs ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0zd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( abs ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 15 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 16 |  | prmuz2 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ℙ  →  ( 𝐴 ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( 𝐴 ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 18 |  | eluz2gt1 | ⊢ ( ( 𝐴 ↑ 2 )  ∈  ( ℤ≥ ‘ 2 )  →  1  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  1  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 | 19 4 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  1  <  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 21 | 15 20 | eqbrtrid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( 1 ↑ 2 )  <  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 22 | 5 | absge0d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 23 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 24 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 25 |  | lt2sq | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) ) )  →  ( 1  <  ( abs ‘ 𝐴 )  ↔  ( 1 ↑ 2 )  <  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 26 | 23 24 25 | mpanl12 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) )  →  ( 1  <  ( abs ‘ 𝐴 )  ↔  ( 1 ↑ 2 )  <  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 27 | 6 22 26 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( 1  <  ( abs ‘ 𝐴 )  ↔  ( 1 ↑ 2 )  <  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 28 | 21 27 | mpbird | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  1  <  ( abs ‘ 𝐴 ) ) | 
						
							| 29 |  | eluz2b1 | ⊢ ( ( abs ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( abs ‘ 𝐴 )  ∈  ℤ  ∧  1  <  ( abs ‘ 𝐴 ) ) ) | 
						
							| 30 | 14 28 29 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ( abs ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 31 |  | nprm | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( abs ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ¬  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  ∈  ℙ ) | 
						
							| 32 | 30 30 31 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℙ )  →  ¬  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  ∈  ℙ ) | 
						
							| 33 | 11 32 | pm2.65da | ⊢ ( 𝐴  ∈  ℤ  →  ¬  ( 𝐴 ↑ 2 )  ∈  ℙ ) |