Metamath Proof Explorer
Description: Square of reciprocal. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
sqrecd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
sqrecd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
sqrecd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
2z |
⊢ 2 ∈ ℤ |
4 |
3
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
5 |
|
exprec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 2 ∈ ℤ ) → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) ) |