Step |
Hyp |
Ref |
Expression |
1 |
|
sqrteulem.1 |
⊢ 𝐵 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
2 |
1
|
oveq1i |
⊢ ( 𝐵 ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) |
3 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
5 |
|
resqrtcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
addcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
11 |
9 10
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
13 |
|
abscl |
⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
14 |
11 13
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
17 |
11
|
abs00ad |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
18 |
17
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) |
20 |
12 16 19
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℂ ) |
21 |
8 20
|
sqmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) ) |
22 |
2 21
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) ) |
23 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
24 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
25 |
|
resqrtth |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) = ( abs ‘ 𝐴 ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) = ( abs ‘ 𝐴 ) ) |
27 |
12 16 19
|
sqdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) ) |
28 |
|
absvalsq |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
29 |
|
2cn |
⊢ 2 ∈ ℂ |
30 |
|
mulass |
⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
31 |
29 30
|
mp3an1 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
32 |
9 31
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
33 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
34 |
29 9 33
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
35 |
|
mulcom |
⊢ ( ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
36 |
34 35
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
37 |
32 36
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
38 |
28 37
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
39 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
40 |
|
adddi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) → ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
41 |
39 34 40
|
mpd3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
42 |
38 41
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
43 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
44 |
42 43
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( 𝐴 · 𝐴 ) ) ) |
45 |
|
binom2 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
46 |
9 45
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
47 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
48 |
39 34
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
49 |
47 48 47
|
adddid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = ( ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( 𝐴 · 𝐴 ) ) ) |
50 |
44 46 49
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) |
51 |
9 34
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
52 |
9 39
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
53 |
51 52
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
54 |
9 9
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
55 |
54
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) ) |
56 |
|
mul12 |
⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
57 |
29 9 9 56
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
58 |
9
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
59 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
60 |
39 59
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
61 |
28 58 60
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) ) |
63 |
55 57 62
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
64 |
63
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) ) |
65 |
9 39 34
|
adddid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
66 |
53 64 65
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
68 |
|
cjadd |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) ) |
69 |
9 68
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) ) |
70 |
3
|
cjred |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) |
72 |
69 71
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) |
73 |
72
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) ) |
74 |
9 47 9 39
|
muladdd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
75 |
73 74
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
76 |
|
absvalsq |
⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
77 |
11 76
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
78 |
|
mulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
79 |
39 78
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
80 |
54 79
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) ∈ ℂ ) |
81 |
|
mulcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
82 |
9 81
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
83 |
80 52 82
|
addassd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
84 |
75 77 83
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
85 |
9 48 47
|
adddid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
86 |
67 84 85
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) |
87 |
50 86
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
89 |
27 88
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
90 |
26 89
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) ) |
91 |
|
addcl |
⊢ ( ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) |
92 |
48 91
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) |
93 |
9 47 92
|
mul12d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
96 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
97 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
98 |
92 97
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
99 |
98
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
100 |
9 92
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
101 |
100
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
102 |
|
sqeq0 |
⊢ ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ) ) |
103 |
15 102
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ) ) |
104 |
86
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = 0 ) ) |
105 |
103 104 17
|
3bitr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = 0 ) ) |
106 |
105
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ≠ 0 ) ) |
107 |
106
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ≠ 0 ) |
108 |
96 99 101 107
|
divassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) ) |
109 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) |
110 |
109 101 107
|
divcan4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = 𝐴 ) |
111 |
95 108 110
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) = 𝐴 ) |
112 |
22 90 111
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 ↑ 2 ) = 𝐴 ) |
113 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
114 |
11
|
addcjd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
115 |
|
2re |
⊢ 2 ∈ ℝ |
116 |
11
|
recld |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
117 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) → ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
118 |
115 116 117
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
119 |
114 118
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
120 |
119
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
121 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
122 |
120 121 19
|
redivcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
123 |
113 122
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ) |
124 |
|
sqrtge0 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
125 |
3 4 124
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
126 |
125
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
127 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
128 |
|
releabs |
⊢ ( - 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) |
129 |
127 128
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) |
130 |
|
abscl |
⊢ ( - 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℝ ) |
131 |
127 130
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℝ ) |
132 |
127
|
recld |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ∈ ℝ ) |
133 |
131 132
|
subge0d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ↔ ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) ) |
134 |
129 133
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
135 |
|
readd |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) |
136 |
9 135
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) |
137 |
3
|
rered |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
138 |
|
absneg |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
139 |
137 138
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ - 𝐴 ) ) |
140 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
141 |
140
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - - 𝐴 ) = ( ℜ ‘ 𝐴 ) ) |
142 |
127
|
renegd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - - 𝐴 ) = - ( ℜ ‘ - 𝐴 ) ) |
143 |
141 142
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = - ( ℜ ‘ - 𝐴 ) ) |
144 |
139 143
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) + - ( ℜ ‘ - 𝐴 ) ) ) |
145 |
131
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℂ ) |
146 |
132
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ∈ ℂ ) |
147 |
145 146
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ - 𝐴 ) + - ( ℜ ‘ - 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
148 |
136 144 147
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
149 |
134 148
|
breqtrrd |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
150 |
|
0le2 |
⊢ 0 ≤ 2 |
151 |
|
mulge0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
152 |
115 150 151
|
mpanl12 |
⊢ ( ( ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
153 |
116 149 152
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
154 |
153 114
|
breqtrrd |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
155 |
154
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
156 |
|
absge0 |
⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → 0 ≤ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
157 |
12 156
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
158 |
121 157 19
|
ne0gt0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 < ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
159 |
|
divge0 |
⊢ ( ( ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∧ ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 < ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → 0 ≤ ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
160 |
120 155 121 158 159
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
161 |
113 122 126 160
|
mulge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
162 |
|
2pos |
⊢ 0 < 2 |
163 |
|
divge0 |
⊢ ( ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
164 |
115 162 163
|
mpanr12 |
⊢ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
165 |
123 161 164
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
166 |
8 20
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ) |
167 |
1 166
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 𝐵 ∈ ℂ ) |
168 |
|
reval |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) |
169 |
167 168
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) |
170 |
1
|
oveq1i |
⊢ ( 𝐵 + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
171 |
1
|
fveq2i |
⊢ ( ∗ ‘ 𝐵 ) = ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
172 |
8 20
|
cjmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
173 |
171 172
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐵 ) = ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
174 |
6
|
cjred |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
176 |
12 16 19
|
cjdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
177 |
121
|
cjred |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
178 |
177
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
179 |
176 178
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
180 |
175 179
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
181 |
173 180
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐵 ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
182 |
181
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( 𝐵 + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
183 |
12
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
184 |
183 16 19
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℂ ) |
185 |
8 20 184
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
186 |
170 182 185
|
3eqtr4a |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
187 |
12 183 16 19
|
divdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
188 |
187
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
189 |
186 188
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
190 |
189
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
191 |
169 190
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐵 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
192 |
165 191
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
193 |
|
subneg |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
194 |
9 193
|
mpancom |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
195 |
194
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
196 |
9 127
|
subeq0ad |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
197 |
195 196
|
bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
198 |
197
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ - 𝐴 ) ) |
199 |
198
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ - 𝐴 ) |
200 |
|
resqcl |
⊢ ( ( i · 𝐵 ) ∈ ℝ → ( ( i · 𝐵 ) ↑ 2 ) ∈ ℝ ) |
201 |
|
ax-icn |
⊢ i ∈ ℂ |
202 |
|
sqmul |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · 𝐵 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
203 |
201 167 202
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
204 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
205 |
204
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( i ↑ 2 ) = - 1 ) |
206 |
205 112
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) = ( - 1 · 𝐴 ) ) |
207 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
208 |
207
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
209 |
203 206 208
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ↑ 2 ) = - 𝐴 ) |
210 |
209
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( i · 𝐵 ) ↑ 2 ) ∈ ℝ ↔ - 𝐴 ∈ ℝ ) ) |
211 |
200 210
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → - 𝐴 ∈ ℝ ) ) |
212 |
|
renegcl |
⊢ ( - 𝐴 ∈ ℝ → - - 𝐴 ∈ ℝ ) |
213 |
140
|
eleq1d |
⊢ ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
214 |
212 213
|
syl5ib |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) ) |
215 |
109 211 214
|
sylsyld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 𝐴 ∈ ℝ ) ) |
216 |
|
sqge0 |
⊢ ( ( i · 𝐵 ) ∈ ℝ → 0 ≤ ( ( i · 𝐵 ) ↑ 2 ) ) |
217 |
209
|
breq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ( i · 𝐵 ) ↑ 2 ) ↔ 0 ≤ - 𝐴 ) ) |
218 |
216 217
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 0 ≤ - 𝐴 ) ) |
219 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
220 |
219
|
biimprcd |
⊢ ( 0 ≤ - 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 ≤ 0 ) ) |
221 |
218 215 220
|
syl6c |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 𝐴 ≤ 0 ) ) |
222 |
215 221
|
jcad |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ) ) |
223 |
|
absnid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
224 |
222 223
|
syl6 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
225 |
224
|
necon3ad |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) ≠ - 𝐴 → ¬ ( i · 𝐵 ) ∈ ℝ ) ) |
226 |
199 225
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐵 ) ∈ ℝ ) |
227 |
|
rpre |
⊢ ( ( i · 𝐵 ) ∈ ℝ+ → ( i · 𝐵 ) ∈ ℝ ) |
228 |
226 227
|
nsyl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐵 ) ∈ ℝ+ ) |
229 |
|
df-nel |
⊢ ( ( i · 𝐵 ) ∉ ℝ+ ↔ ¬ ( i · 𝐵 ) ∈ ℝ+ ) |
230 |
228 229
|
sylibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( i · 𝐵 ) ∉ ℝ+ ) |
231 |
112 192 230
|
3jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐵 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ∧ ( i · 𝐵 ) ∉ ℝ+ ) ) |