| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrteulem.1 | ⊢ 𝐵  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 𝐵 ↑ 2 )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ↑ 2 ) | 
						
							| 3 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 |  | absge0 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 5 |  | resqrtcl | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) )  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 9 | 3 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 |  | addcl | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ ) | 
						
							| 11 | 9 10 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ ) | 
						
							| 13 |  | abscl | ⊢ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ ) | 
						
							| 14 | 11 13 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 17 | 11 | abs00ad | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  0  ↔  ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0 ) ) | 
						
							| 18 | 17 | necon3bid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ≠  0  ↔  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 ) ) | 
						
							| 19 | 18 | biimpar | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ≠  0 ) | 
						
							| 20 | 12 16 19 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 21 | 8 20 | sqmuld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ↑ 2 )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 22 | 2 21 | eqtrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐵 ↑ 2 )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 24 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 25 |  | resqrtth | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 27 | 12 16 19 | sqdivd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  /  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 28 |  | absvalsq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 29 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 30 |  | mulass | ⊢ ( ( 2  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  ·  𝐴 )  =  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 31 | 29 30 | mp3an1 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  ·  𝐴 )  =  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 32 | 9 31 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  ·  𝐴 )  =  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 33 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ )  →  ( 2  ·  ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 34 | 29 9 33 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 35 |  | mulcom | ⊢ ( ( ( 2  ·  ( abs ‘ 𝐴 ) )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  ·  𝐴 )  =  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 36 | 34 35 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  ·  𝐴 )  =  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 32 36 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) )  =  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 38 | 28 37 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 39 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 40 |  | adddi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( 2  ·  ( abs ‘ 𝐴 ) )  ∈  ℂ )  →  ( 𝐴  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 41 | 39 34 40 | mpd3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  +  ( 𝐴  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 42 | 38 41 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) )  =  ( 𝐴  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 43 |  | sqval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 44 | 42 43 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) )  +  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐴  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  +  ( 𝐴  ·  𝐴 ) ) ) | 
						
							| 45 |  | binom2 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) )  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 46 | 9 45 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) )  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 47 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 48 | 39 34 | addcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 49 | 47 48 47 | adddid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  =  ( ( 𝐴  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  +  ( 𝐴  ·  𝐴 ) ) ) | 
						
							| 50 | 44 46 49 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) | 
						
							| 51 | 9 34 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 52 | 9 39 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 51 52 | addcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 54 | 9 9 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 55 | 54 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 56 |  | mul12 | ⊢ ( ( 2  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ )  →  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 57 | 29 9 9 56 | mp3an2i | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 58 | 9 | sqvald | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 59 |  | mulcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ∗ ‘ 𝐴 )  ∈  ℂ )  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 60 | 39 59 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 61 | 28 58 60 | 3eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  =  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 63 | 55 57 62 | 3eqtr3rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 65 | 9 39 34 | adddid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 66 | 53 64 65 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 68 |  | cjadd | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( ∗ ‘ ( abs ‘ 𝐴 ) )  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 69 | 9 68 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( ∗ ‘ ( abs ‘ 𝐴 ) )  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 70 | 3 | cjred | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( abs ‘ 𝐴 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ ( abs ‘ 𝐴 ) )  +  ( ∗ ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 72 | 69 71 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 73 | 72 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  =  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ( abs ‘ 𝐴 )  +  ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 74 | 9 47 9 39 | muladdd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ( abs ‘ 𝐴 )  +  ( ∗ ‘ 𝐴 ) ) )  =  ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) ) | 
						
							| 75 | 73 74 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  =  ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) ) | 
						
							| 76 |  | absvalsq | ⊢ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 77 | 11 76 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ·  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 78 |  | mulcl | ⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( ∗ ‘ 𝐴 )  ·  𝐴 )  ∈  ℂ ) | 
						
							| 79 | 39 78 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ 𝐴 )  ·  𝐴 )  ∈  ℂ ) | 
						
							| 80 | 54 79 | addcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 81 |  | mulcl | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( abs ‘ 𝐴 )  ·  𝐴 )  ∈  ℂ ) | 
						
							| 82 | 9 81 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  𝐴 )  ∈  ℂ ) | 
						
							| 83 | 80 52 82 | addassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) )  =  ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) ) | 
						
							| 84 | 75 77 83 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  ( ( ( ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐴 ) )  +  ( ( ∗ ‘ 𝐴 )  ·  𝐴 ) )  +  ( ( abs ‘ 𝐴 )  ·  ( ∗ ‘ 𝐴 ) ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 85 | 9 48 47 | adddid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  =  ( ( ( abs ‘ 𝐴 )  ·  ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) ) )  +  ( ( abs ‘ 𝐴 )  ·  𝐴 ) ) ) | 
						
							| 86 | 67 84 85 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) | 
						
							| 87 | 50 86 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  /  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 ) )  =  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 ) ↑ 2 )  /  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 ) )  =  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 89 | 27 88 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ↑ 2 )  =  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 90 | 26 89 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ↑ 2 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) ) | 
						
							| 91 |  | addcl | ⊢ ( ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 )  ∈  ℂ ) | 
						
							| 92 | 48 91 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 )  ∈  ℂ ) | 
						
							| 93 | 9 47 92 | mul12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  =  ( 𝐴  ·  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  ·  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  =  ( ( 𝐴  ·  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  ·  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  =  ( ( 𝐴  ·  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) | 
						
							| 96 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 97 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 )  ∈  ℂ )  →  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 98 | 92 97 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 100 | 9 92 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 102 |  | sqeq0 | ⊢ ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℂ  →  ( ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  0  ↔  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  0 ) ) | 
						
							| 103 | 15 102 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  0  ↔  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  0 ) ) | 
						
							| 104 | 86 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ↑ 2 )  =  0  ↔  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  =  0 ) ) | 
						
							| 105 | 103 104 17 | 3bitr3rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0  ↔  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  =  0 ) ) | 
						
							| 106 | 105 | necon3bid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0  ↔  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ≠  0 ) ) | 
						
							| 107 | 106 | biimpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  ≠  0 ) | 
						
							| 108 | 96 99 101 107 | divassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  ·  ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) ) ) | 
						
							| 109 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 110 | 109 101 107 | divcan4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( 𝐴  ·  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) )  =  𝐴 ) | 
						
							| 111 | 95 108 110 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 )  ·  ( ( 𝐴  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) )  /  ( ( abs ‘ 𝐴 )  ·  ( ( ( ∗ ‘ 𝐴 )  +  ( 2  ·  ( abs ‘ 𝐴 ) ) )  +  𝐴 ) ) ) )  =  𝐴 ) | 
						
							| 112 | 22 90 111 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐵 ↑ 2 )  =  𝐴 ) | 
						
							| 113 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 114 | 11 | addcjd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  =  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 115 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 116 | 11 | recld | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ ) | 
						
							| 117 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ )  →  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 118 | 115 116 117 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 119 | 114 118 | eqeltrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 121 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ ) | 
						
							| 122 | 120 121 19 | redivcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 123 | 113 122 | remulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 124 |  | sqrtge0 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) )  →  0  ≤  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 125 | 3 4 124 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 127 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 128 |  | releabs | ⊢ ( - 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ≤  ( abs ‘ - 𝐴 ) ) | 
						
							| 129 | 127 128 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ≤  ( abs ‘ - 𝐴 ) ) | 
						
							| 130 |  | abscl | ⊢ ( - 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 131 | 127 130 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 132 | 127 | recld | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 133 | 131 132 | subge0d | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) )  ↔  ( ℜ ‘ - 𝐴 )  ≤  ( abs ‘ - 𝐴 ) ) ) | 
						
							| 134 | 129 133 | mpbird | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) ) ) | 
						
							| 135 |  | readd | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( ℜ ‘ ( abs ‘ 𝐴 ) )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 136 | 9 135 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( ℜ ‘ ( abs ‘ 𝐴 ) )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 137 | 3 | rered | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( abs ‘ 𝐴 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 138 |  | absneg | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 139 | 137 138 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( abs ‘ 𝐴 ) )  =  ( abs ‘ - 𝐴 ) ) | 
						
							| 140 |  | negneg | ⊢ ( 𝐴  ∈  ℂ  →  - - 𝐴  =  𝐴 ) | 
						
							| 141 | 140 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - - 𝐴 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 142 | 127 | renegd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - - 𝐴 )  =  - ( ℜ ‘ - 𝐴 ) ) | 
						
							| 143 | 141 142 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  =  - ( ℜ ‘ - 𝐴 ) ) | 
						
							| 144 | 139 143 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ ( abs ‘ 𝐴 ) )  +  ( ℜ ‘ 𝐴 ) )  =  ( ( abs ‘ - 𝐴 )  +  - ( ℜ ‘ - 𝐴 ) ) ) | 
						
							| 145 | 131 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 146 | 132 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 147 | 145 146 | negsubd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ - 𝐴 )  +  - ( ℜ ‘ - 𝐴 ) )  =  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) ) ) | 
						
							| 148 | 136 144 147 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  =  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) ) ) | 
						
							| 149 | 134 148 | breqtrrd | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) | 
						
							| 150 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 151 |  | mulge0 | ⊢ ( ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  ∧  ( ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  →  0  ≤  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 152 | 115 150 151 | mpanl12 | ⊢ ( ( ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  →  0  ≤  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 153 | 116 149 152 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( 2  ·  ( ℜ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 154 | 153 114 | breqtrrd | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 156 |  | absge0 | ⊢ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ  →  0  ≤  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) | 
						
							| 157 | 12 156 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) | 
						
							| 158 | 121 157 19 | ne0gt0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  <  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) | 
						
							| 159 |  | divge0 | ⊢ ( ( ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℝ  ∧  0  ≤  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∧  ( ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℝ  ∧  0  <  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  →  0  ≤  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 160 | 120 155 121 158 159 | syl22anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 161 | 113 122 126 160 | mulge0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 162 |  | 2pos | ⊢ 0  <  2 | 
						
							| 163 |  | divge0 | ⊢ ( ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  ℝ  ∧  0  ≤  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  ≤  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 164 | 115 162 163 | mpanr12 | ⊢ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  ℝ  ∧  0  ≤  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  →  0  ≤  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 165 | 123 161 164 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 166 | 8 20 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 167 | 1 166 | eqeltrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 168 |  | reval | ⊢ ( 𝐵  ∈  ℂ  →  ( ℜ ‘ 𝐵 )  =  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 ) ) | 
						
							| 169 | 167 168 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ℜ ‘ 𝐵 )  =  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 ) ) | 
						
							| 170 | 1 | oveq1i | ⊢ ( 𝐵  +  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  +  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 171 | 1 | fveq2i | ⊢ ( ∗ ‘ 𝐵 )  =  ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 172 | 8 20 | cjmuld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  =  ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) )  ·  ( ∗ ‘ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 173 | 171 172 | eqtrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ 𝐵 )  =  ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) )  ·  ( ∗ ‘ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 174 | 6 | cjred | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 176 | 12 16 19 | cjdivd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 177 | 121 | cjred | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  =  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) | 
						
							| 178 | 177 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 179 | 176 178 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 180 | 175 179 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) )  ·  ( ∗ ‘ ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 181 | 173 180 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ 𝐵 )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 182 | 181 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  =  ( 𝐵  +  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 183 | 12 | cjcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 184 | 183 16 19 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 185 | 8 20 184 | adddid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  +  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  +  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 186 | 170 182 185 | 3eqtr4a | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  +  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 187 | 12 183 16 19 | divdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  =  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  +  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 188 | 187 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  +  ( ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 189 | 186 188 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) | 
						
							| 190 | 189 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( 𝐵  +  ( ∗ ‘ 𝐵 ) )  /  2 )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 191 | 169 190 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ℜ ‘ 𝐵 )  =  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( ( abs ‘ 𝐴 )  +  𝐴 )  +  ( ∗ ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  /  2 ) ) | 
						
							| 192 | 165 191 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  0  ≤  ( ℜ ‘ 𝐵 ) ) | 
						
							| 193 |  | subneg | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  ( ( abs ‘ 𝐴 )  +  𝐴 ) ) | 
						
							| 194 | 9 193 | mpancom | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  ( ( abs ‘ 𝐴 )  +  𝐴 ) ) | 
						
							| 195 | 194 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  0  ↔  ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0 ) ) | 
						
							| 196 | 9 127 | subeq0ad | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  0  ↔  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 197 | 195 196 | bitr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0  ↔  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 198 | 197 | necon3bid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0  ↔  ( abs ‘ 𝐴 )  ≠  - 𝐴 ) ) | 
						
							| 199 | 198 | biimpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ≠  - 𝐴 ) | 
						
							| 200 |  | resqcl | ⊢ ( ( i  ·  𝐵 )  ∈  ℝ  →  ( ( i  ·  𝐵 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 201 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 202 |  | sqmul | ⊢ ( ( i  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( i  ·  𝐵 ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 203 | 201 167 202 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 204 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 205 | 204 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( i ↑ 2 )  =  - 1 ) | 
						
							| 206 | 205 112 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i ↑ 2 )  ·  ( 𝐵 ↑ 2 ) )  =  ( - 1  ·  𝐴 ) ) | 
						
							| 207 |  | mulm1 | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 209 | 203 206 208 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 ) ↑ 2 )  =  - 𝐴 ) | 
						
							| 210 | 209 | eleq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( i  ·  𝐵 ) ↑ 2 )  ∈  ℝ  ↔  - 𝐴  ∈  ℝ ) ) | 
						
							| 211 | 200 210 | imbitrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  - 𝐴  ∈  ℝ ) ) | 
						
							| 212 |  | renegcl | ⊢ ( - 𝐴  ∈  ℝ  →  - - 𝐴  ∈  ℝ ) | 
						
							| 213 | 140 | eleq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - - 𝐴  ∈  ℝ  ↔  𝐴  ∈  ℝ ) ) | 
						
							| 214 | 212 213 | imbitrid | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) ) | 
						
							| 215 | 109 211 214 | sylsyld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  𝐴  ∈  ℝ ) ) | 
						
							| 216 |  | sqge0 | ⊢ ( ( i  ·  𝐵 )  ∈  ℝ  →  0  ≤  ( ( i  ·  𝐵 ) ↑ 2 ) ) | 
						
							| 217 | 209 | breq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( 0  ≤  ( ( i  ·  𝐵 ) ↑ 2 )  ↔  0  ≤  - 𝐴 ) ) | 
						
							| 218 | 216 217 | imbitrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  0  ≤  - 𝐴 ) ) | 
						
							| 219 |  | le0neg1 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  0  ↔  0  ≤  - 𝐴 ) ) | 
						
							| 220 | 219 | biimprcd | ⊢ ( 0  ≤  - 𝐴  →  ( 𝐴  ∈  ℝ  →  𝐴  ≤  0 ) ) | 
						
							| 221 | 218 215 220 | syl6c | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  𝐴  ≤  0 ) ) | 
						
							| 222 | 215 221 | jcad | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 ) ) ) | 
						
							| 223 |  | absnid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 224 | 222 223 | syl6 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( i  ·  𝐵 )  ∈  ℝ  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 225 | 224 | necon3ad | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 )  ≠  - 𝐴  →  ¬  ( i  ·  𝐵 )  ∈  ℝ ) ) | 
						
							| 226 | 199 225 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ¬  ( i  ·  𝐵 )  ∈  ℝ ) | 
						
							| 227 |  | rpre | ⊢ ( ( i  ·  𝐵 )  ∈  ℝ+  →  ( i  ·  𝐵 )  ∈  ℝ ) | 
						
							| 228 | 226 227 | nsyl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ¬  ( i  ·  𝐵 )  ∈  ℝ+ ) | 
						
							| 229 |  | df-nel | ⊢ ( ( i  ·  𝐵 )  ∉  ℝ+  ↔  ¬  ( i  ·  𝐵 )  ∈  ℝ+ ) | 
						
							| 230 | 228 229 | sylibr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( i  ·  𝐵 )  ∉  ℝ+ ) | 
						
							| 231 | 112 192 230 | 3jca | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( 𝐵 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 )  ∧  ( i  ·  𝐵 )  ∉  ℝ+ ) ) |