Step |
Hyp |
Ref |
Expression |
1 |
|
sqrlem1.1 |
⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } |
2 |
|
sqrlem1.2 |
⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℝ+ ) |
4 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
5 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
|
lemul1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) |
8 |
6 7
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) |
9 |
4 4 5 8
|
syl12anc |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) |
11 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℂ ) |
13 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
14 |
13
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
16 |
11
|
mulid2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 · 𝐴 ) = 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 1 · 𝐴 ) = 𝐴 ) |
18 |
10 15 17
|
3brtr3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ 𝐴 ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
20 |
19
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
21 |
20 1
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℝ+ ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
22 |
3 18 21
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ 𝑆 ) |