Step |
Hyp |
Ref |
Expression |
1 |
|
sqrlem1.1 |
⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } |
2 |
|
sqrlem1.2 |
⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) |
3 |
|
sqrlem5.3 |
⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } |
4 |
1
|
ssrab3 |
⊢ 𝑆 ⊆ ℝ+ |
5 |
4
|
sseli |
⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ+ ) |
6 |
5
|
rpge0d |
⊢ ( 𝑣 ∈ 𝑆 → 0 ≤ 𝑣 ) |
7 |
6
|
rgen |
⊢ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 |
8 |
1 2
|
sqrlem3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) |
9 |
|
pm4.24 |
⊢ ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ↔ ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ) ) |
10 |
9
|
3anbi1i |
⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) ↔ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) ) |
11 |
3 10
|
supmullem2 |
⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
12 |
7 8 8 11
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
13 |
1 2
|
sqrlem4 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) ) |
14 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) → 𝐵 ∈ ℝ ) |
16 |
13 15
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℂ ) |
18 |
17
|
sqvald |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
19 |
2 2
|
oveq12i |
⊢ ( 𝐵 · 𝐵 ) = ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) |
20 |
3 10
|
supmul |
⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) → ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) = sup ( 𝑇 , ℝ , < ) ) |
21 |
7 8 8 20
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) = sup ( 𝑇 , ℝ , < ) ) |
22 |
19 21
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 · 𝐵 ) = sup ( 𝑇 , ℝ , < ) ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) |
24 |
12 23
|
jca |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) ) |