Step |
Hyp |
Ref |
Expression |
1 |
|
simplr1 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 ↑ 2 ) = 𝐴 ) |
2 |
|
simprr1 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑦 ↑ 2 ) = 𝐴 ) |
3 |
1 2
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
4 |
|
sqeqor |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) ) |
5 |
4
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) ) |
6 |
3 5
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 = 𝑦 ∨ 𝑥 = - 𝑦 ) ) |
7 |
6
|
ord |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → 𝑥 = - 𝑦 ) ) |
8 |
|
3simpc |
⊢ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = - 𝑦 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ - 𝑦 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ - 𝑦 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = - 𝑦 → ( i · 𝑥 ) = ( i · - 𝑦 ) ) |
12 |
|
neleq1 |
⊢ ( ( i · 𝑥 ) = ( i · - 𝑦 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · - 𝑦 ) ∉ ℝ+ ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑥 = - 𝑦 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · - 𝑦 ) ∉ ℝ+ ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
15 |
8 14
|
syl5ibcom |
⊢ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑥 = - 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
17 |
7 16
|
syld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
18 |
|
negeq |
⊢ ( 𝑦 = 0 → - 𝑦 = - 0 ) |
19 |
|
neg0 |
⊢ - 0 = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑦 = 0 → - 𝑦 = 0 ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑦 = 0 → ( 𝑥 = - 𝑦 ↔ 𝑥 = 0 ) ) |
22 |
|
eqeq2 |
⊢ ( 𝑦 = 0 → ( 𝑥 = 𝑦 ↔ 𝑥 = 0 ) ) |
23 |
21 22
|
bitr4d |
⊢ ( 𝑦 = 0 → ( 𝑥 = - 𝑦 ↔ 𝑥 = 𝑦 ) ) |
24 |
23
|
biimpcd |
⊢ ( 𝑥 = - 𝑦 → ( 𝑦 = 0 → 𝑥 = 𝑦 ) ) |
25 |
24
|
necon3bd |
⊢ ( 𝑥 = - 𝑦 → ( ¬ 𝑥 = 𝑦 → 𝑦 ≠ 0 ) ) |
26 |
7 25
|
syli |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → 𝑦 ≠ 0 ) ) |
27 |
|
3simpc |
⊢ ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) → ( 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) |
28 |
|
cnpart |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ↔ ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
29 |
27 28
|
syl5ib |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
30 |
29
|
impancom |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → ( 𝑦 ≠ 0 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( 𝑦 ≠ 0 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
32 |
26 31
|
syld |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ( ¬ 𝑥 = 𝑦 → ¬ ( 0 ≤ ( ℜ ‘ - 𝑦 ) ∧ ( i · - 𝑦 ) ∉ ℝ+ ) ) ) |
33 |
17 32
|
pm2.65d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → ¬ ¬ 𝑥 = 𝑦 ) |
34 |
33
|
notnotrd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∧ ( 𝑦 ∈ ℂ ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → 𝑥 = 𝑦 ) |
35 |
34
|
an4s |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) → 𝑥 = 𝑦 ) |
36 |
35
|
ex |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
37 |
36
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) ) |
38 |
37
|
ralrimivv |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
39 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
40 |
39
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( 𝑦 ↑ 2 ) = 𝐴 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝑦 ) ) |
42 |
41
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) |
44 |
|
neleq1 |
⊢ ( ( i · 𝑥 ) = ( i · 𝑦 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) |
45 |
43 44
|
syl |
⊢ ( 𝑥 = 𝑦 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) |
46 |
40 42 45
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) |
47 |
46
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) → 𝑥 = 𝑦 ) ) |
48 |
38 47
|
sylibr |
⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |