Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
sqrtval |
⊢ ( 0 ∈ ℂ → ( √ ‘ 0 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( √ ‘ 0 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
4 |
|
id |
⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) |
5 |
|
sqeq0 |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 ↑ 2 ) = 0 ↔ 𝑥 = 0 ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) = 0 ) → 𝑥 = 0 ) |
7 |
6
|
3ad2antr1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → 𝑥 = 0 ) |
8 |
7
|
ex |
⊢ ( 𝑥 ∈ ℂ → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → 𝑥 = 0 ) ) |
9 |
|
sq0i |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = 0 ) |
10 |
|
0le0 |
⊢ 0 ≤ 0 |
11 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 0 ) ) |
12 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ℜ ‘ 𝑥 ) = 0 ) |
14 |
10 13
|
breqtrrid |
⊢ ( 𝑥 = 0 → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
15 |
|
0re |
⊢ 0 ∈ ℝ |
16 |
|
eleq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ∈ ℝ ↔ 0 ∈ ℝ ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝑥 = 0 → 𝑥 ∈ ℝ ) |
18 |
|
rennim |
⊢ ( 𝑥 ∈ ℝ → ( i · 𝑥 ) ∉ ℝ+ ) |
19 |
17 18
|
syl |
⊢ ( 𝑥 = 0 → ( i · 𝑥 ) ∉ ℝ+ ) |
20 |
9 14 19
|
3jca |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
21 |
8 20
|
impbid1 |
⊢ ( 𝑥 ∈ ℂ → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ 𝑥 = 0 ) ) |
22 |
21
|
adantl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ 𝑥 = 0 ) ) |
23 |
4 22
|
riota5 |
⊢ ( 0 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 0 ) |
24 |
1 23
|
ax-mp |
⊢ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 0 |
25 |
3 24
|
eqtri |
⊢ ( √ ‘ 0 ) = 0 |