| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resqrtcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( √ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 |  | sqrtge0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  0  ≤  ( √ ‘ 𝐴 ) ) | 
						
							| 3 | 1 2 | jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( √ ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐴 ) ) ) | 
						
							| 4 |  | resqrtcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( √ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 5 |  | sqrtge0 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  0  ≤  ( √ ‘ 𝐵 ) ) | 
						
							| 6 | 4 5 | jca | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( √ ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐵 ) ) ) | 
						
							| 7 |  | sq11 | ⊢ ( ( ( ( √ ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐴 ) )  ∧  ( ( √ ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐵 ) ) )  →  ( ( ( √ ‘ 𝐴 ) ↑ 2 )  =  ( ( √ ‘ 𝐵 ) ↑ 2 )  ↔  ( √ ‘ 𝐴 )  =  ( √ ‘ 𝐵 ) ) ) | 
						
							| 8 | 3 6 7 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( ( √ ‘ 𝐴 ) ↑ 2 )  =  ( ( √ ‘ 𝐵 ) ↑ 2 )  ↔  ( √ ‘ 𝐴 )  =  ( √ ‘ 𝐵 ) ) ) | 
						
							| 9 |  | resqrtth | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 ) | 
						
							| 10 |  | resqrtth | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵 ) | 
						
							| 11 | 9 10 | eqeqan12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( ( √ ‘ 𝐴 ) ↑ 2 )  =  ( ( √ ‘ 𝐵 ) ↑ 2 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 12 | 8 11 | bitr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( √ ‘ 𝐴 )  =  ( √ ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) ) |