Description: The square root function is one-to-one. (Contributed by NM, 27-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | sqrt11i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
| 3 | sqrt11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = ( √ ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |