Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
|
cxpsqrt |
⊢ ( 2 ∈ ℂ → ( 2 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 2 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 2 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 2 ) |
4 |
3
|
eqcomi |
⊢ ( √ ‘ 2 ) = ( 2 ↑𝑐 ( 1 / 2 ) ) |
5 |
4
|
oveq1i |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) |
6 |
|
2rp |
⊢ 2 ∈ ℝ+ |
7 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
8 9
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
11 |
|
9nn |
⊢ 9 ∈ ℕ |
12 |
|
nnrp |
⊢ ( 9 ∈ ℕ → 9 ∈ ℝ+ ) |
13 |
11 12
|
ax-mp |
⊢ 9 ∈ ℝ+ |
14 |
|
relogbzcl |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℝ+ ) → ( 2 logb 9 ) ∈ ℝ ) |
15 |
10 13 14
|
mp2an |
⊢ ( 2 logb 9 ) ∈ ℝ |
16 |
|
cxpcom |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ∧ ( 2 logb 9 ) ∈ ℝ ) → ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) ) |
17 |
6 7 15 16
|
mp3an |
⊢ ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) |
18 |
15
|
recni |
⊢ ( 2 logb 9 ) ∈ ℂ |
19 |
|
cxpcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 logb 9 ) ∈ ℂ ) → ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ ) |
20 |
1 18 19
|
mp2an |
⊢ ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ |
21 |
|
cxpsqrt |
⊢ ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ → ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) |
23 |
5 17 22
|
3eqtri |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) |
24 |
|
2ne0 |
⊢ 2 ≠ 0 |
25 |
|
1ne2 |
⊢ 1 ≠ 2 |
26 |
25
|
necomi |
⊢ 2 ≠ 1 |
27 |
|
eldifpr |
⊢ ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) ) |
28 |
1 24 26 27
|
mpbir3an |
⊢ 2 ∈ ( ℂ ∖ { 0 , 1 } ) |
29 |
|
9cn |
⊢ 9 ∈ ℂ |
30 |
|
9re |
⊢ 9 ∈ ℝ |
31 |
|
9pos |
⊢ 0 < 9 |
32 |
30 31
|
gt0ne0ii |
⊢ 9 ≠ 0 |
33 |
|
eldifsn |
⊢ ( 9 ∈ ( ℂ ∖ { 0 } ) ↔ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) |
34 |
29 32 33
|
mpbir2an |
⊢ 9 ∈ ( ℂ ∖ { 0 } ) |
35 |
|
cxplogb |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 9 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 ↑𝑐 ( 2 logb 9 ) ) = 9 ) |
36 |
28 34 35
|
mp2an |
⊢ ( 2 ↑𝑐 ( 2 logb 9 ) ) = 9 |
37 |
36
|
fveq2i |
⊢ ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) = ( √ ‘ 9 ) |
38 |
|
sqrt9 |
⊢ ( √ ‘ 9 ) = 3 |
39 |
23 37 38
|
3eqtri |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = 3 |