Step |
Hyp |
Ref |
Expression |
1 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
2 |
|
1lt2 |
⊢ 1 < 2 |
3 |
|
1re |
⊢ 1 ∈ ℝ |
4 |
|
0le1 |
⊢ 0 ≤ 1 |
5 |
|
2re |
⊢ 2 ∈ ℝ |
6 |
|
0le2 |
⊢ 0 ≤ 2 |
7 |
|
sqrtlt |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( 1 < 2 ↔ ( √ ‘ 1 ) < ( √ ‘ 2 ) ) ) |
8 |
3 4 5 6 7
|
mp4an |
⊢ ( 1 < 2 ↔ ( √ ‘ 1 ) < ( √ ‘ 2 ) ) |
9 |
2 8
|
mpbi |
⊢ ( √ ‘ 1 ) < ( √ ‘ 2 ) |
10 |
1 9
|
eqbrtrri |
⊢ 1 < ( √ ‘ 2 ) |
11 |
|
2lt4 |
⊢ 2 < 4 |
12 |
|
4re |
⊢ 4 ∈ ℝ |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
4pos |
⊢ 0 < 4 |
15 |
13 12 14
|
ltleii |
⊢ 0 ≤ 4 |
16 |
|
sqrtlt |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 4 ∈ ℝ ∧ 0 ≤ 4 ) ) → ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) ) |
17 |
5 6 12 15 16
|
mp4an |
⊢ ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) |
18 |
11 17
|
mpbi |
⊢ ( √ ‘ 2 ) < ( √ ‘ 4 ) |
19 |
|
sqrt4 |
⊢ ( √ ‘ 4 ) = 2 |
20 |
18 19
|
breqtri |
⊢ ( √ ‘ 2 ) < 2 |
21 |
10 20
|
pm3.2i |
⊢ ( 1 < ( √ ‘ 2 ) ∧ ( √ ‘ 2 ) < 2 ) |