Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
2 |
|
breq2 |
⊢ ( 𝑛 = 1 → ( 𝑧 < 𝑛 ↔ 𝑧 < 1 ) ) |
3 |
2
|
imbi1d |
⊢ ( 𝑛 = 1 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
5 |
|
breq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑧 < 𝑛 ↔ 𝑧 < 𝑦 ) ) |
6 |
5
|
imbi1d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑛 = 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( 𝑧 < 𝑛 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
11 |
|
nnnlt1 |
⊢ ( 𝑧 ∈ ℕ → ¬ 𝑧 < 1 ) |
12 |
11
|
pm2.21d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
13 |
12
|
rgen |
⊢ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) |
14 |
|
nnrp |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) |
15 |
|
rphalflt |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) |
16 |
14 15
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 / 2 ) < 𝑦 ) |
17 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑧 < 𝑦 ↔ ( 𝑦 / 2 ) < 𝑦 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑥 / 𝑧 ) = ( 𝑥 / ( 𝑦 / 2 ) ) ) |
19 |
18
|
neeq2d |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
21 |
17 20
|
imbi12d |
⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
22 |
21
|
rspcv |
⊢ ( ( 𝑦 / 2 ) ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
23 |
22
|
com13 |
⊢ ( ( 𝑦 / 2 ) < 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
24 |
16 23
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
25 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) |
26 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℂ ) |
28 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℂ ) |
30 |
|
2cnd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ∈ ℂ ) |
31 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ≠ 0 ) |
33 |
|
2ne0 |
⊢ 2 ≠ 0 |
34 |
33
|
a1i |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ≠ 0 ) |
35 |
27 29 30 32 34
|
divcan7d |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) = ( 𝑧 / 𝑦 ) ) |
36 |
25 35
|
eqtr4d |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) |
37 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℤ ) |
38 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℕ ) |
39 |
37 38 25
|
sqrt2irrlem |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) ∈ ℤ ∧ ( 𝑦 / 2 ) ∈ ℕ ) ) |
40 |
39
|
simprd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑦 / 2 ) ∈ ℕ ) |
41 |
39
|
simpld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑧 / 2 ) ∈ ℤ ) |
42 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( 𝑥 / ( 𝑦 / 2 ) ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) |
43 |
42
|
neeq2d |
⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ↔ ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
44 |
43
|
rspcv |
⊢ ( ( 𝑧 / 2 ) ∈ ℤ → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
45 |
41 44
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
46 |
40 45
|
embantd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
47 |
46
|
necon2bd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
48 |
36 47
|
mpd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
49 |
48
|
ex |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
50 |
49
|
necon2ad |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
51 |
50
|
ralrimdva |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
52 |
24 51
|
syld |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
53 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 / 𝑦 ) = ( 𝑧 / 𝑦 ) ) |
54 |
53
|
neeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
55 |
54
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) |
56 |
52 55
|
syl6ibr |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
57 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 / 𝑧 ) = ( 𝑥 / 𝑦 ) ) |
58 |
57
|
neeq2d |
⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
59 |
58
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
60 |
59
|
ceqsralv |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
61 |
56 60
|
sylibrd |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
62 |
61
|
ancld |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
63 |
|
nnleltp1 |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
64 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
65 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
66 |
|
leloe |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
67 |
64 65 66
|
syl2an |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
68 |
63 67
|
bitr3d |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
69 |
68
|
ancoms |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
70 |
69
|
imbi1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
71 |
|
jaob |
⊢ ( ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
72 |
70 71
|
bitrdi |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
73 |
72
|
ralbidva |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
74 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
75 |
73 74
|
bitrdi |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
76 |
62 75
|
sylibrd |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
77 |
4 7 10 10 13 76
|
nnind |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
78 |
1 77
|
syl |
⊢ ( 𝑦 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
79 |
65
|
ltp1d |
⊢ ( 𝑦 ∈ ℕ → 𝑦 < ( 𝑦 + 1 ) ) |
80 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 < ( 𝑦 + 1 ) ↔ 𝑦 < ( 𝑦 + 1 ) ) ) |
81 |
|
df-ne |
⊢ ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
82 |
58 81
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
83 |
82
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
84 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
85 |
83 84
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
86 |
80 85
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
87 |
86
|
rspcv |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
88 |
78 79 87
|
mp2d |
⊢ ( 𝑦 ∈ ℕ → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
89 |
88
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) |
90 |
|
elq |
⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
91 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
92 |
90 91
|
bitri |
⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
93 |
89 92
|
mtbir |
⊢ ¬ ( √ ‘ 2 ) ∈ ℚ |
94 |
93
|
nelir |
⊢ ( √ ‘ 2 ) ∉ ℚ |