Metamath Proof Explorer


Theorem sqrt2irr0

Description: The square root of 2 is an irrational number. (Contributed by AV, 23-Dec-2022)

Ref Expression
Assertion sqrt2irr0 ( √ ‘ 2 ) ∈ ( ℝ ∖ ℚ )

Proof

Step Hyp Ref Expression
1 sqrt2irr ( √ ‘ 2 ) ∉ ℚ
2 sqrt2re ( √ ‘ 2 ) ∈ ℝ
3 2 a1i ( ( √ ‘ 2 ) ∉ ℚ → ( √ ‘ 2 ) ∈ ℝ )
4 df-nel ( ( √ ‘ 2 ) ∉ ℚ ↔ ¬ ( √ ‘ 2 ) ∈ ℚ )
5 4 biimpi ( ( √ ‘ 2 ) ∉ ℚ → ¬ ( √ ‘ 2 ) ∈ ℚ )
6 3 5 eldifd ( ( √ ‘ 2 ) ∉ ℚ → ( √ ‘ 2 ) ∈ ( ℝ ∖ ℚ ) )
7 1 6 ax-mp ( √ ‘ 2 ) ∈ ( ℝ ∖ ℚ )