Step |
Hyp |
Ref |
Expression |
1 |
|
sqrt2irrlem.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
sqrt2irrlem.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
sqrt2irrlem.3 |
⊢ ( 𝜑 → ( √ ‘ 2 ) = ( 𝐴 / 𝐵 ) ) |
4 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
5 |
4
|
sqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) |
6 |
3
|
oveq1d |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
7 |
5 6
|
eqtr3d |
⊢ ( 𝜑 → 2 = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
8 |
1
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
9 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
10 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
11 |
8 9 10
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → 2 = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) ) |
14 |
8
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
15 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
16 |
15
|
nncnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
17 |
15
|
nnne0d |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≠ 0 ) |
18 |
14 16 17
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
19 |
13 18
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( ( 𝐴 ↑ 2 ) / 2 ) ) |
21 |
|
2ne0 |
⊢ 2 ≠ 0 |
22 |
21
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
23 |
16 4 22
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
24 |
20 23
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
25 |
24 15
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℕ ) |
26 |
25
|
nnzd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) |
27 |
|
zesq |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
28 |
1 27
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
29 |
26 28
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℤ ) |
30 |
4
|
sqvald |
⊢ ( 𝜑 → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
32 |
8 4 22
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
33 |
14 4 4 22 22
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
34 |
31 32 33
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) ) |
35 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
36 |
34 35
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
37 |
|
zsqcl |
⊢ ( ( 𝐴 / 2 ) ∈ ℤ → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) |
38 |
29 37
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) |
39 |
36 38
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ) |
40 |
15
|
nnrpd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ+ ) |
41 |
40
|
rphalfcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℝ+ ) |
42 |
41
|
rpgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) |
43 |
|
elnnz |
⊢ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) ) |
44 |
39 42 43
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) |
45 |
|
nnesq |
⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
46 |
2 45
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
47 |
44 46
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
48 |
29 47
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |