Metamath Proof Explorer


Theorem sqrt9

Description: The square root of 9 is 3. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion sqrt9 ( √ ‘ 9 ) = 3

Proof

Step Hyp Ref Expression
1 sq3 ( 3 ↑ 2 ) = 9
2 1 fveq2i ( √ ‘ ( 3 ↑ 2 ) ) = ( √ ‘ 9 )
3 3re 3 ∈ ℝ
4 0re 0 ∈ ℝ
5 3pos 0 < 3
6 4 3 5 ltleii 0 ≤ 3
7 sqrtsq ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → ( √ ‘ ( 3 ↑ 2 ) ) = 3 )
8 3 6 7 mp2an ( √ ‘ ( 3 ↑ 2 ) ) = 3
9 2 8 eqtr3i ( √ ‘ 9 ) = 3