Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtcl | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtval | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 2 | sqreu | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 3 | riotacl | ⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∈ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∈ ℂ ) |
| 5 | 1 4 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) |