Metamath Proof Explorer


Theorem sqrtcli

Description: The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999) (Revised by Mario Carneiro, 6-Sep-2013)

Ref Expression
Hypothesis sqrtthi.1 𝐴 ∈ ℝ
Assertion sqrtcli ( 0 ≤ 𝐴 → ( √ ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 resqrtcl ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ )
3 1 2 mpan ( 0 ≤ 𝐴 → ( √ ‘ 𝐴 ) ∈ ℝ )