Step |
Hyp |
Ref |
Expression |
1 |
|
sqrcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
3 |
2
|
a1i |
⊢ ( ⊤ → √ : ℂ ⟶ ℂ ) |
4 |
3
|
feqmptd |
⊢ ( ⊤ → √ = ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ) |
5 |
4
|
reseq1d |
⊢ ( ⊤ → ( √ ↾ 𝐷 ) = ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ 𝐷 ) ) |
6 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
7 |
1 6
|
eqsstri |
⊢ 𝐷 ⊆ ℂ |
8 |
|
resmpt |
⊢ ( 𝐷 ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( √ ‘ 𝑥 ) ) ) |
9 |
7 8
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( √ ‘ 𝑥 ) ) ) |
10 |
7
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
11 |
10
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ℂ ) |
12 |
|
cxpsqrt |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
13 |
11 12
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( √ ‘ 𝑥 ) = ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( √ ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) |
16 |
5 9 15
|
3eqtrd |
⊢ ( ⊤ → ( √ ↾ 𝐷 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ) |
17 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
18 |
17
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
19 |
18
|
a1i |
⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
20 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
21 |
19 7 20
|
sylancl |
⊢ ( ⊤ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
22 |
21
|
cnmptid |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ) ) |
23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
24 |
|
halfcl |
⊢ ( 1 ∈ ℂ → ( 1 / 2 ) ∈ ℂ ) |
25 |
23 24
|
mp1i |
⊢ ( ⊤ → ( 1 / 2 ) ∈ ℂ ) |
26 |
21 19 25
|
cnmptc |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( 1 / 2 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
27 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) |
28 |
1 17 27
|
cxpcn |
⊢ ( 𝑦 ∈ 𝐷 , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
29 |
28
|
a1i |
⊢ ( ⊤ → ( 𝑦 ∈ 𝐷 , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
30 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = ( 1 / 2 ) ) → ( 𝑦 ↑𝑐 𝑧 ) = ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) |
31 |
21 22 26 21 19 29 30
|
cnmpt12 |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
32 |
|
ssid |
⊢ ℂ ⊆ ℂ |
33 |
18
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
34 |
17 27 33
|
cncfcn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
35 |
7 32 34
|
mp2an |
⊢ ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) |
36 |
31 35
|
eleqtrrdi |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
37 |
16 36
|
eqeltrd |
⊢ ( ⊤ → ( √ ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) |
38 |
37
|
mptru |
⊢ ( √ ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) |