| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 2 |
1
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 3 |
|
elrp |
⊢ ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 4 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 5 |
3 4
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 6 |
|
resqrtcl |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 7 |
2 5 6
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 9 |
|
rpsqrtcl |
⊢ ( 𝐵 ∈ ℝ+ → ( √ ‘ 𝐵 ) ∈ ℝ+ ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ∈ ℝ+ ) |
| 11 |
10
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ∈ ℂ ) |
| 12 |
10
|
rpne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ≠ 0 ) |
| 13 |
8 11 12
|
divcan4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) = ( √ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 14 |
|
rprege0 |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 16 |
|
sqrtmul |
⊢ ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) ) |
| 17 |
2 5 15 16
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 20 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 22 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
| 24 |
19 21 23
|
divcan1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( √ ‘ 𝐴 ) ) |
| 26 |
17 25
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) = ( √ ‘ 𝐴 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |
| 28 |
13 27
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |