Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrtf | ⊢ √ : ℂ ⟶ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex | ⊢ ( ℩ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ∈ V | |
2 | df-sqrt | ⊢ √ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) | |
3 | 1 2 | fnmpti | ⊢ √ Fn ℂ |
4 | sqrtcl | ⊢ ( 𝑥 ∈ ℂ → ( √ ‘ 𝑥 ) ∈ ℂ ) | |
5 | 4 | rgen | ⊢ ∀ 𝑥 ∈ ℂ ( √ ‘ 𝑥 ) ∈ ℂ |
6 | ffnfv | ⊢ ( √ : ℂ ⟶ ℂ ↔ ( √ Fn ℂ ∧ ∀ 𝑥 ∈ ℂ ( √ ‘ 𝑥 ) ∈ ℂ ) ) | |
7 | 3 5 6 | mpbir2an | ⊢ √ : ℂ ⟶ ℂ |