Metamath Proof Explorer


Theorem sqrtf

Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion sqrtf √ : ℂ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 riotaex ( 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ∈ V
2 df-sqrt √ = ( 𝑥 ∈ ℂ ↦ ( 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) )
3 1 2 fnmpti √ Fn ℂ
4 sqrtcl ( 𝑥 ∈ ℂ → ( √ ‘ 𝑥 ) ∈ ℂ )
5 4 rgen 𝑥 ∈ ℂ ( √ ‘ 𝑥 ) ∈ ℂ
6 ffnfv ( √ : ℂ ⟶ ℂ ↔ ( √ Fn ℂ ∧ ∀ 𝑥 ∈ ℂ ( √ ‘ 𝑥 ) ∈ ℂ ) )
7 3 5 6 mpbir2an √ : ℂ ⟶ ℂ