Metamath Proof Explorer


Theorem sqrtge0d

Description: The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 ( 𝜑𝐴 ∈ ℝ )
resqrcld.2 ( 𝜑 → 0 ≤ 𝐴 )
Assertion sqrtge0d ( 𝜑 → 0 ≤ ( √ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 resqrcld.1 ( 𝜑𝐴 ∈ ℝ )
2 resqrcld.2 ( 𝜑 → 0 ≤ 𝐴 )
3 sqrtge0 ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → 0 ≤ ( √ ‘ 𝐴 ) )