Metamath Proof Explorer


Theorem sqrtgt0

Description: The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2013)

Ref Expression
Assertion sqrtgt0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 ltle ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
3 1 2 mpan ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
4 3 imp ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 )
5 resqrtcl ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ )
6 4 5 syldan ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ )
7 sqrtge0 ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) )
8 4 7 syldan ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) )
9 gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
10 sq0i ( ( √ ‘ 𝐴 ) = 0 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 )
11 resqrtth ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )
12 4 11 syldan ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )
13 12 eqeq1d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 ↔ 𝐴 = 0 ) )
14 10 13 syl5ib ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) = 0 → 𝐴 = 0 ) )
15 14 necon3d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ≠ 0 → ( √ ‘ 𝐴 ) ≠ 0 ) )
16 9 15 mpd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ≠ 0 )
17 6 8 16 ne0gt0d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) )