Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
5 |
|
resqrtcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
sqrtge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
8 |
4 7
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
9 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
10 |
|
sq0i |
⊢ ( ( √ ‘ 𝐴 ) = 0 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 ) |
11 |
|
resqrtth |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
12 |
4 11
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
13 |
12
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 0 ↔ 𝐴 = 0 ) ) |
14 |
10 13
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( √ ‘ 𝐴 ) = 0 → 𝐴 = 0 ) ) |
15 |
14
|
necon3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ≠ 0 → ( √ ‘ 𝐴 ) ≠ 0 ) ) |
16 |
9 15
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( √ ‘ 𝐴 ) ≠ 0 ) |
17 |
6 8 16
|
ne0gt0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) ) |