Metamath Proof Explorer


Theorem sqrtlim

Description: The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Assertion sqrtlim ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) ⇝𝑟 0

Proof

Step Hyp Ref Expression
1 rpcn ( 𝑛 ∈ ℝ+𝑛 ∈ ℂ )
2 cxpsqrt ( 𝑛 ∈ ℂ → ( 𝑛𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑛 ) )
3 1 2 syl ( 𝑛 ∈ ℝ+ → ( 𝑛𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑛 ) )
4 3 oveq2d ( 𝑛 ∈ ℝ+ → ( 1 / ( 𝑛𝑐 ( 1 / 2 ) ) ) = ( 1 / ( √ ‘ 𝑛 ) ) )
5 4 mpteq2ia ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛𝑐 ( 1 / 2 ) ) ) ) = ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) )
6 1rp 1 ∈ ℝ+
7 rphalfcl ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ )
8 cxplim ( ( 1 / 2 ) ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 )
9 6 7 8 mp2b ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0
10 5 9 eqbrtrri ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) ⇝𝑟 0