Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ ) |
2 |
|
cxpsqrt |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑛 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑛 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑛 ∈ ℝ+ → ( 1 / ( 𝑛 ↑𝑐 ( 1 / 2 ) ) ) = ( 1 / ( √ ‘ 𝑛 ) ) ) |
5 |
4
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛 ↑𝑐 ( 1 / 2 ) ) ) ) = ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) |
6 |
|
1rp |
⊢ 1 ∈ ℝ+ |
7 |
|
rphalfcl |
⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
8 |
|
cxplim |
⊢ ( ( 1 / 2 ) ∈ ℝ+ → ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 ) |
9 |
6 7 8
|
mp2b |
⊢ ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( 𝑛 ↑𝑐 ( 1 / 2 ) ) ) ) ⇝𝑟 0 |
10 |
5 9
|
eqbrtrri |
⊢ ( 𝑛 ∈ ℝ+ ↦ ( 1 / ( √ ‘ 𝑛 ) ) ) ⇝𝑟 0 |