| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtle | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) )  →  ( 𝐵  ≤  𝐴  ↔  ( √ ‘ 𝐵 )  ≤  ( √ ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐵  ≤  𝐴  ↔  ( √ ‘ 𝐵 )  ≤  ( √ ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ¬  𝐵  ≤  𝐴  ↔  ¬  ( √ ‘ 𝐵 )  ≤  ( √ ‘ 𝐴 ) ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 4 5 | ltnled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  <  𝐵  ↔  ¬  𝐵  ≤  𝐴 ) ) | 
						
							| 7 |  | resqrtcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( √ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( √ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 9 |  | resqrtcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( √ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( √ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 11 | 8 10 | ltnled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( √ ‘ 𝐴 )  <  ( √ ‘ 𝐵 )  ↔  ¬  ( √ ‘ 𝐵 )  ≤  ( √ ‘ 𝐴 ) ) ) | 
						
							| 12 | 3 6 11 | 3bitr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  <  𝐵  ↔  ( √ ‘ 𝐴 )  <  ( √ ‘ 𝐵 ) ) ) |