Metamath Proof Explorer


Theorem sqrtlti

Description: Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005)

Ref Expression
Hypotheses sqrtthi.1 𝐴 ∈ ℝ
sqr11.1 𝐵 ∈ ℝ
Assertion sqrtlti ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 sqr11.1 𝐵 ∈ ℝ
3 sqrtlt ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) )
4 2 3 mpanr1 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) )
5 1 4 mpanl1 ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) )