Description: Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | sqrtlti | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
3 | sqrtlt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) | |
4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) |
5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) |