Description: Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | sqrtlti | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
| 3 | sqrtlt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) | |
| 4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) | 
| 5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ) ) |