Description: Square root of square. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrtmsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 · 𝐴 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
3 | 2 | sqvald | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
4 | 3 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ ( 𝐴 · 𝐴 ) ) ) |
5 | sqrtsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) | |
6 | 4 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 · 𝐴 ) ) = 𝐴 ) |