Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | sqrtmsq2i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
3 | sqrtsq2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) | |
4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |
5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |
6 | 2 | recni | ⊢ 𝐵 ∈ ℂ |
7 | 6 | sqvali | ⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) |
8 | 7 | eqeq2i | ⊢ ( 𝐴 = ( 𝐵 ↑ 2 ) ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) |
9 | 5 8 | bitrdi | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) ) |