Metamath Proof Explorer


Theorem sqrtmsq2i

Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999)

Ref Expression
Hypotheses sqrtthi.1 𝐴 ∈ ℝ
sqr11.1 𝐵 ∈ ℝ
Assertion sqrtmsq2i ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵𝐴 = ( 𝐵 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 sqr11.1 𝐵 ∈ ℝ
3 sqrtsq2 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵𝐴 = ( 𝐵 ↑ 2 ) ) )
4 2 3 mpanr1 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵𝐴 = ( 𝐵 ↑ 2 ) ) )
5 1 4 mpanl1 ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵𝐴 = ( 𝐵 ↑ 2 ) ) )
6 2 recni 𝐵 ∈ ℂ
7 6 sqvali ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 )
8 7 eqeq2i ( 𝐴 = ( 𝐵 ↑ 2 ) ↔ 𝐴 = ( 𝐵 · 𝐵 ) )
9 5 8 bitrdi ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵𝐴 = ( 𝐵 · 𝐵 ) ) )