Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | sqrtmsq2i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
| 3 | sqrtsq2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) | |
| 4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) | 
| 5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) | 
| 6 | 2 | recni | ⊢ 𝐵 ∈ ℂ | 
| 7 | 6 | sqvali | ⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) | 
| 8 | 7 | eqeq2i | ⊢ ( 𝐴 = ( 𝐵 ↑ 2 ) ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) | 
| 9 | 5 8 | bitrdi | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐵 ) ) ) |