| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 2 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 3 |
1 2
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 4 |
|
mulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 5 |
|
resqrtcl |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 7 |
|
resqrtcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
|
resqrtcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( √ ‘ 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐵 ) ∈ ℝ ) |
| 11 |
8 10
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
| 12 |
|
sqrtge0 |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → 0 ≤ ( √ ‘ ( 𝐴 · 𝐵 ) ) ) |
| 13 |
3 4 12
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ ( 𝐴 · 𝐵 ) ) ) |
| 14 |
|
sqrtge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 16 |
|
sqrtge0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 0 ≤ ( √ ‘ 𝐵 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( √ ‘ 𝐵 ) ) |
| 18 |
8 10 15 17
|
mulge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |
| 19 |
|
resqrtth |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 20 |
|
resqrtth |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
| 21 |
19 20
|
oveqan12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) · ( ( √ ‘ 𝐵 ) ↑ 2 ) ) = ( 𝐴 · 𝐵 ) ) |
| 22 |
8
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 23 |
10
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ 𝐵 ) ∈ ℂ ) |
| 24 |
22 23
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐴 ) ↑ 2 ) · ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 25 |
|
resqrtth |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 26 |
3 4 25
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 27 |
21 24 26
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ ( 𝐴 · 𝐵 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ↑ 2 ) ) |
| 28 |
6 11 13 18 27
|
sq11d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |