Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| sqr11.1 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | sqrtmuli | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqrtthi.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | sqr11.1 | ⊢ 𝐵 ∈ ℝ | |
| 3 | sqrtmul | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) | |
| 4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 0 ≤ 𝐵 ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) | 
| 5 | 1 4 | mpanl1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |