Metamath Proof Explorer
Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)
|
|
Ref |
Expression |
|
Hypotheses |
sqrtthi.1 |
⊢ 𝐴 ∈ ℝ |
|
|
sqr11.1 |
⊢ 𝐵 ∈ ℝ |
|
|
sqrmuli.1 |
⊢ 0 ≤ 𝐴 |
|
|
sqrmuli.2 |
⊢ 0 ≤ 𝐵 |
|
Assertion |
sqrtmulii |
⊢ ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtthi.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
sqr11.1 |
⊢ 𝐵 ∈ ℝ |
3 |
|
sqrmuli.1 |
⊢ 0 ≤ 𝐴 |
4 |
|
sqrmuli.2 |
⊢ 0 ≤ 𝐵 |
5 |
1 2
|
sqrtmuli |
⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) |