Metamath Proof Explorer


Theorem sqrtmulii

Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)

Ref Expression
Hypotheses sqrtthi.1 𝐴 ∈ ℝ
sqr11.1 𝐵 ∈ ℝ
sqrmuli.1 0 ≤ 𝐴
sqrmuli.2 0 ≤ 𝐵
Assertion sqrtmulii ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 sqr11.1 𝐵 ∈ ℝ
3 sqrmuli.1 0 ≤ 𝐴
4 sqrmuli.2 0 ≤ 𝐵
5 1 2 sqrtmuli ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) ) )
6 3 4 5 mp2an ( √ ‘ ( 𝐴 · 𝐵 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐵 ) )